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Section 12.1

3D Coordinate Systems

Three-Dimensional Coordinate Systems: What Do They Do? Do They Do Things? Let’s Find Out!

Objectives:

• Identify planes, spheres, and cylinders in R3

• Find the distance between points in R3

Types of 3D Regions

The plane is a region in R3 of the form, for a, b, c, d in R,

ax+ by + cz = d.

The most common examples of planes are the xy-plane (where z = 0), the xz-plane (where
y = 0), and the yz-plane (where x = 0).

Example 1. (Math3D) What is the projection of the point (7, 9,−1) on the xz-plane?
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Example 2. (Math3D) Sketch the graph of the plane 2x+ 4y + 6z = 12.

The cylinder is a region in R3 of the form

(x− h)2 + (y − k)2 = r2.

Recall that the same space would be a circle in R2. Since no z-variable is specified the
z-coordinate can be any number. This free variable gives the region its “vertical” cylindrical
shape.

Example 3. (Math3D) Sketch the graph of x2 + y2 = 1 in R3.

A cylinder can open in any direction - even diagonally!

A sphere is a region in R3 of the form

(x− h)2 + (y − k)2 + (z − l)2 = r2.

The center of the sphere is given by (h, k, l), and the radius of the sphere is r. The difference
between the sphere and the cylinder is that the z-distance matters.

Example 4. (Math3D) Write the sphere x2 + y2 + z2 + 4x − 6y + 2z + 6 = 0 in standard
form.

2

https://www.math3d.org/j8lyGNZKv
https://www.math3d.org/LHIG9uSB4
https://www.math3d.org/yqLqgfX2X


©2024 John Weeks

Example 5. (Math3D) What is the equation of the intersection between the sphere from
the previous example and the xy-plane?

Example 6. What is the equation of a sphere centered at (2, 3, 4) that touches the yz-plane?

Distance and Midpoints

As we have seen in the above definitions, coordinates in R3 are of the form (x, y, z). Let’s
take two points P (x1, y1, z1) and Q(x2, y2, z2). Using the Pythagorean Theorem a few times
tells us that the distance between P and Q is given by

|PQ| =
√

(x2 − x1)2 + (y2 − y1)2 + (z2 − z1)2.

The midpoint of the line segment PQ is defined to be(
x1 + x2

2
,
y1 + y2

2
,
z1 + z2

2

)
.

Example 7. Find the equation of a sphere with endpoints (0, 4, 2) and (6, 2,−2).

3

https://www.math3d.org/yqLqgfX2X


©2024 John Weeks

Right-Hand Rule The direction of the axes in three-dimensional space is
given by the right-hand rule. You may have already been using this in physics as well - it is
useful for determining the positive orientation of an object, which we will discuss in Chapter
16.

1. Put your fingers in the direction of the first vector.

2. With your fingers pointing this direction, curl them in the direction of the second
vector. (You may need to resituate your hand in order to do this.)

3. Your thumb is now pointing in the direction of the third vector.

Try this with the x, y, and z-axes. Point your fingers in the direction of the positive x-axis,
then curl it in the direction of the positive y-axis. Which direction is your thumb pointing
in?

(This is standard in mathematics, but in aerospace it is common for the positive z-axis to
be facing downward instead!)
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Section 12.2

Vectors in 3D

Objectives:

• Algebraically manipulate 3D vectors

• Identify unit vectors and find unit vectors in the direction of a given vector

A vector is a quantity with magnitude and direction. Any coordinate (a, b, c) in R3 is a
vector, and we can think of vectors ⟨a, b, c⟩ as arrows with an initial point at the origin
and a terminal point at the coordinate (a, b, c).

NOTE: Unlike coordinates, spatial translates of vectors are considered equivalent.

Example 1. Find the vectorAB with initial pointA(2,−3, 4) and terminal pointB(−2, 1, 1).
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Algebra of Vectors

Let a = ⟨a1, a2, a3⟩,b = ⟨b1, b2, b3⟩ be vectors in R3 and let c be a scalar.

a) Scalar Multiplication ca = c⟨a1, a2, a3⟩ = ⟨ca1, ca2, ca3⟩

b) Vector Magnitude |a| =
√

a21 + a22 + a23

c) Vector Sum a+ b = ⟨a1 + b1, a2 + b2, a3 + b3⟩

d) Vector Difference a− b = ⟨a1 − b1, a2 − b2, a3 − b3⟩

e) Unit Vector The vector a
|a| is a unit vector of length 1 in the direction of a.

f) Standard Unit Vectors The vectors i, j, and k are unit vectors in the directions of
the positive x, y, and z-axes, respectively.

Example 2. Let a = ⟨0, 3, 5⟩ and b = ⟨2, 4, 1⟩. Find a− 2b.

Example 3. Find a unit vector in the same direction as ⟨3, 4, 12⟩. Then find a vector of
length 5 in this direction.
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Example 4. Find the following vectors:

i) i× j ii) i× k iii) j× k

iv) j× i v) k× i vi) k× j
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Section 12.3

The Dot Product

Objectives:

• Use the dot product to find the angle between two vectors

• Calculate the projection of one vector onto another

Defining the Dot Product

As simple as the dot product seems, it will find use for us throughout this entire course,
especially when two vectors are parallel or orthogonal. We define the dot product to be

a · b = |a||b| cos(θ),

where θ is the angle between a and b. Note that, for a,b ̸= 0,

a · b = 0 ⇐⇒ θ = 90◦ ⇐⇒ a and b are orthogonal.

The Law of Cosines gives us another definition that does not use the angle θ: if a = ⟨a1, a2, a3⟩
and b = ⟨b1, b2, b3⟩, then

a · b = a1b1 + a2b2 + a3b3.

Example 1. Find the dot product of the vectors a = ⟨6,−2, 3⟩ and b = ⟨2, 5,−1⟩.
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Example 2. Is the expression (a · b) · c a scalar, vector, or neither?

Example 3. (Math3D) Find the angle between the vectors a = ⟨2, 2,−1⟩ and b = ⟨5,−3, 2⟩.

Example 4. How can we tell if two vectors a and b are parallel?

Example 5. Let A(1,−3,−2), B(2, 0,−4), and C(6,−2,−5) form a triangle. Find the angle
∠ABC.
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Vector Projections

In Example 1 of 12.1 we found the projection of a point onto a plane. This can be thought
of as the shadow of the point from a light beaming down directly onto the plane beneath.
We can think of the vector projection proja b of b onto a as the part of b in the direction
of a. The formula for this is given by

proja b =

(
a · b
|a|

)
a

|a|
=

(
a · b
|a|2

)
a.

Since the vector projection is in the direction of a, it is a scalar multiple of a - this is clear
from the above formula as well. That scalar multiple of the unit vector in the direction of a
called the scalar projection of b onto a.

compa b =
a · b
|a|

.

Sometimes this scalar projection is negative, meaning that the vector projection is in the
opposite direction of a.

Example 6. (Math3D) Find the scalar and vector projection of b = ⟨1, 1, 2⟩ onto a =
⟨−2, 3, 1⟩.
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Section 12.4

The Cross Product

Objectives:

• Calculate the cross product of two vectors using determinants

• Find the area of triangles and parallelograms using vectors

Determinants and the Cross Product

In Section 12.3 we saw that the dot product was not very useful in determining whether two
vectors were parallel. It turns out the cross product is one tool that can help us discover
this.

The cross product of vectors a = ⟨a1, a2, a3⟩ and b = ⟨b1, b2, b3⟩ is defined to be

a× b = ⟨a2b3 − a3b2, a3b1 − a1b3, a1b2 − a2b1⟩.

Wow! That’s a lot of variables! Is there a mechanism to remember all this by? Indeed, there
are a few, and we will choose one that will be useful for us down the road.

A determinant of order 2 is defined to be∣∣∣∣ a b
c d

∣∣∣∣ = ad− bc.

A determinant of order 3 can be defined in terms of order 2 determinants:∣∣∣∣∣∣
a1 a2 a3
b1 b2 b3
c1 c2 c3

∣∣∣∣∣∣ = a1

∣∣∣∣ b2 b3
c2 c3

∣∣∣∣− a2

∣∣∣∣ b1 b3
c1 c3

∣∣∣∣+ a3

∣∣∣∣ b2 b3
c2 c3

∣∣∣∣ .
We can now rewrite the cross product as

a× b =

∣∣∣∣∣∣
i j k
a1 a2 a3
b1 b2 b3

∣∣∣∣∣∣ .
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Example 1. (Math3D) Find the cross product of a = ⟨1, 3, 4⟩ and b = ⟨2, 7,−5⟩.

Example 2. (Math3D) Show the vector you got from the previous example is perpendicular
to both a and b.

Example 3. Find a vector perpendicular to the plane that passes through the points P (1, 4, 6),
Q(−2, 5,−1), and R(1,−1, 1).

It can determined directly from properties of the cross product and some calculation that

|a× b| = |a||b| sin(θ).

NOTE: There is a slight difference in form between this and the similar dot product formula:
we have to take the magnitude of a× b since, unlike the dot product, a× b is a vector, not
a scalar.
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Example 4. Using the graphic below, find |u× v| and determine its direction.

Example 5. Find the area of the parallelogram PQRS passing through the points P (1, 0, 2),
Q(3, 3, 3), R(7, 5, 8), and S(5, 2, 7).

Example 6. Find the area of the triangle PQR passing through the points P (1, 0, 1),
Q(−2, 1, 3), and R(4, 2, 5).
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Section 12.5

Equations of Lines and Planes

Objectives:

• Define lines in R3 using vectors and parameters

• Write plane equations using their normal vectors

• Find the intersection point between two lines and the angle between two planes

Vectors and Lines in Space

We now know that our standard formula for a line in R2

ax+ by = c

forms a plane in R3. So how do we define lines in R3? One way is to observe the intersection
of two planes, which we will do later. Another way is to introduce the use of a parameter t.

A parametric equation of a line passing through point (x0, y0, z0) and parallel to the
direction vector v = ⟨a, b, c⟩ is given by

x = x0 + at, y = y0 + bt, z = z0 + ct.

If we compile the starting point into a vector r0 = ⟨x0, y0, z0⟩ and our running point into
r = ⟨x, y, z⟩, then we get the vector equation of a line

⟨x, y, z⟩ = ⟨x0, y0, z0⟩+ ⟨at, bt, ct⟩;
r = r0 + tv.
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Example 1. (Math3D) Find the vector equation and parametric equations for the line pass-
ing through the point (5, 1, 3) and parallel to the vector i + 4j − 2k. Where does this line
intersect the xy-plane?

A clever way to eliminate the parameter entirely is to solve for t in each variable of the
parametric equation. We can then substitute in each of the other equations in for t to get
the symmetric equations of a line:

x− x0

a
=

y − y0
b

=
z − z0

c
.

NOTE: These equations can only be formed if a, b, c ̸= 0.

Example 2. Find parametric and symmetric equations of the line passing throughA(2, 4,−3)
and B(3,−1, 1). Where does this line intersect the xy-plane?
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Example 3. (Math3D) Find the point of intersection between the lines L1 and L2, if there
is any, where

x = 1 + t
L1 : y = −2 + 3t

z = 4− t
and

x = 2s
L2 : y = 3 + s

z = −3 + 4s
.

Vectors and Planes

We say a vector n is normal to a plane if it is perpendicular to it. Let us explain why the
vector n = ⟨a, b, c⟩ is normal to the plane equation we introduced in Section 12.1

ax+ by + cz = d.

Let r0 = (x0, y0, z0) be a point in a plane. Then for any other point r = (x, y, z) in that
plane, the vector r− r0 = ⟨x− x0, y − y0, z − z0⟩ exists entirely in the plane.

Any normal vector n = ⟨a, b, c⟩ would then be perpendicular to this vector; that is,

n · (r− r0) = 0 ⇒ ⟨a, b, c⟩ · ⟨x−x0, y− y0, z− z0⟩ = 0 ⇒ a(x−x0)+ b(y− y0)+ c(z− z0) = 0.

By expanding the left-hand side and moving constants to the right-hand side, setting the
right-hand constant equal to d gets our plane equation. So we write the equation of the
plane to be

n · (r− r0) = 0.

NOTE: The normal vector to a plane is unique up to scalar multiple, meaning that all
normal vectors to a plane are scalar multiples of each other.

16
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Example 4. Find the plane through the point (2, 0, 1) and perpendicular to the line L1 :
x = 3t, y = 2− t, z = 3 + 4t.

Example 5. (Math3D) Find the equation of the plane through the point (1, 2, 3) and parallel
to the plane x+ y + z = 0.

Example 6. Find the equation of the plane passing through the points P (1, 3, 2), Q(3,−1, 6),
and R(5, 2, 0).

17
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Example 7. Find the equation of the plane passing through (3, 5,−1) and containing the
line L1 : x = 4− t, y = 2t− 1, z = −3t.

Example 8. Where does the line L1 : x = 2 − 2t, y = 3t, z = 1 + t intersect the plane
x+ 2y − z = 7?

Using normal vectors to define a plane has an added advantage: it allows us to find the
angle between two planes by simply finding the angle between their normal vectors. We
can show this by using properties of right triangles. We can also see that two planes are
parallel if and only if their normal vectors are parallel.
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Example 9. (Math3D) Find the angle between the planes x+y+z = 1 and x−2y+3z = 1.

We now return to a concept we introduced at the beginning of the section: what region is
the intersection of two planes?

Example 10. (Math3D) What region is the intersection of the two planes from the previous
example? Write an equation describing it.
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Section 13.1

Vector Functions and Space Curves

Objectives:

• Define vector functions and visualize their graphs

• Find domains and limits of vector functions

• Identify space curves with the vector functions they belong to

Vector-Valued Functions

A vector-valued function, or vector function, is a function from R to the space of n-
dimensional vectors. In this class we will normally be looking at three-dimensional vector
vectors, although many of the methods we will use to analyze these can be generalized to
any number of dimensions.

We will define vector functions much like how we defined the vector equation of a line:

r(t) = ⟨f(t), g(t), h(t)⟩ = f(t)i+ g(t)j+ h(t)k.

These two forms will be used interchangeably - you may use whichever form you see fit to
use in a given scenario.

We will also define many of our pre-calculus and calculus terms in intuitive ways to work
with vector functions.

Example 1. Find the limit limt→0 r(t), where r(t) = (1 + t3)i+ te−tj+
sin t

t
k.
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Example 2. Find the domain of r(t) = ⟨ln(t+ 1),
t√

9− t2
, 2t⟩.

Example 3. At what point(s) does r(t) = ti+(2t−t2)k intersect the paraboloid z = x2+y2?

Example 4. (Math3D) Analyze the following curves:

a) x = cos(t), y = sin(t), z =
1

1 + t2 b) x = t cos t, y = t, z = t sin t, t ≥ 0

21
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Section 13.2

Derivatives and Integrals of Vector
Functions

Objectives:

• Apply derivatives and integrals to vector functions

• Define and calculate the unit tangent vector T(t)

Derivatives

In the spirit of the last section, we continue to define calculus concepts for vector-valued
functions. This section will serve as a reminder of the important derivative rules; you must
review these concepts in order to succeed in this course.

Example 1. Find the derivative r′(t) if r(t) = (cos(sin 3t))i+

(
t4 + 1

t2 + 1

)5

j+ ln(t2e−1/t)k.
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Example 2. (Math3D) Find the unit tangent vector T(0), the tengent vector of length
1, to r(t) = ⟨2 cos(t), sin(t), t⟩.

Example 3. Find parametric equations for the tangent line of the curve given above at the
parameter value t = π

2
.

Example 4. (Math3D) The curves r1(t) = ⟨t, t2, t3⟩ and r2(t) = ⟨sin(t), sin(2t), t⟩ intersect
at the origin. Find their angle of intersection.
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Integrals

It is also imperative to review our integration rules as well as limit rules such as L’Hopital’s
rule.

Example 5. Find r(t) if r′(t) = ⟨e−t,
1

t2 + 1
,
1

2t
⟩ and r(1) = ⟨1, 1, 1⟩.

Example 6. Find

∫ π
2

0

r(t) dt where r(t) = 2 cos ti+ sin tj+ 2tk.
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Section 13.3

Arc Length and Curvature

Objectives:

• Determine the length of the space curve defined by a vector function

• Define and calculate the curvature of a curve at a point

• Find the principal unit normal vector

The Arc Length

Recall from Section 10.2 that, in R2, the length of a parametric curve (f(t), g(t)) where
a ≤ t ≤ b was given by

L =

∫ b

a

√(
dx

dt

)2

+

(
dy

dt

)2

dt.

This generalizes to three dimensions quite nicely and for similar reasons: we still plug the
derivatives into the distance function before integrating. The arc length of a vector function
r(t) = ⟨f(t), g(t), h(t)⟩ for a ≤ t ≤ b is given by

L =

∫ b

a

|r′(t)| dt =
∫ b

a

√
(f ′(t))2 + (g′(t))2 + (h′(t))2 dt.

NOTE: We are using | · | to denote distance from 0.
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Example 1. Find the arc length of the function r(t) = ⟨t, 3 cos(t), 3 sin(t)⟩ from 0 ≤ t ≤ 2.

Example 2. (Math3D) Find the length of the arc of the circular helix with vector equation
r(t) = cos ti+ sin tj+ tk from the point (1, 0, 0) to the point (1, 0, 2π).

Example 3. Find the arc length of the function r(t) = ⟨t2, 9t, 4t3/2⟩ from 1 ≤ t ≤ 4.
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Curvature

Given a curve C, we want a measure of how quickly a curve changes direction without having
to refer to a parameter. A curve changing direction would change the direction of the unit
tangent vector, so we measure the rate of change of T(t) with respect to change in s, the
distance along the arc itself.

The curvature of a curve C is hence defined as

κ =

∣∣∣∣dTds
∣∣∣∣ = ∣∣∣∣dT/dt

ds/dt

∣∣∣∣ = |T′(t)|
|r′(t)|

.

Re-introducing the parameter t makes it easier to compute this value.

Yet this latter formula is often still more work than it’s worth! (Trust me, I tried so you
don’t have to.) Oftentimes we will use the following curvature formula instead:

κ(t) =
|r′(t)× r′′(t)|

|r′(t)|3
.

Example 4. Find the curvature of the twisted cubic r(t) = ⟨t, t2, t3⟩ at (0, 0, 0).
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Principal Unit Normal Vector

Just like we have a canonical tangent vector to a curve, it should make sense to ask for a
similar type of normal vector to a curve. (There are actually two - we will only discuss one
in this course.)

T(t)

N(t)

We define the principal unit normal vector

N(t) =
T′(t)

|T′(t)|
.

Example 5. (Math3D) Find the unit normal vector for the circular helix r(t) = cos ti +
sin tj+ tk.
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Section 13.4

Velocity and Acceleration
Objectives:

• Find the velocity, speed, and acceleration of a particle given its position vector function

Velocity and Acceleration

Given a particle moving through space at position r(t) at time t,

a) The velocity of the particle at time t is v(t) = r′(t).

b) The speed of the particle at time t is |v(t)| = |r′(t)|.

c) The acceleration of the particle at time t is a(t) = v′(t) = r′′(t).

Example 1. The position vector of an object moving in space is given by r(t) = ⟨t2, et, tet⟩.
Find the velocity, acceleration, and speed of the particle at time t.

Example 2. The acceleration of a particle at time t is given by a(t) = 2ti+sin tj+cos(2t)k.
Knowing v(0) = i and r(0) = j, find the position r(t) at time t.
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Section 14.1

Functions of Several Variables

Objectives:

• Define a function from a domain in two or more dimensions

• Sketch and analyze basic graphs of functions with several variables

• Use level curves and level surfaces to help visualize three-dimensional objects

Functions of Two Variables

In the previous chapter we discussed functions that had vectors as their output. Here we will
discuss functions with more than one variable in their input. Single-variable vector functions
can sketch curves; multi-variable functions can sketch surfaces.

Example 1. (Math3D) Find and sketch the domain of the following functions:

a) f(x, y) =

√
x+ y + 1

x− 1

30
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b) f(x, y) = x ln(y2 − x).

c) f(x, y) =
√
9− x2 − y2.

Some common surfaces generated from functions of several variables can be seen in the table
on the next page. You may also want to refer back to Section 12.6.

Example 2. Sketch a graph of the following surfaces:

a) f(x, y) = x2 + 4y2 + 1

b) f(x, y) = 10− 4x− 5y
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c) f(x, y) = y2

d) f(x, y) =
√
x2 + y2
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Level Curves

Another way to visualize three-dimensional
graphs in two dimensions is similar to topo-
graphical maps (see figure). We can see that
the right of the mountain is steep since the
lines scrunch together quickly, while the left
of the mountain appears to be a more even
incline. Each line is called a level curve and
satisfies the function f(x, y) = k for some
constant k, meaning they have the same z-
value (in the figure, z is height). We will call
a graph of level curves a contour map.

Example 3. Sketch the level curves of the function f(x, y) = 6− 3x− 2y.

Example 4. Sketch the level curves of the function f(x, y) = 9− x2 − y2.
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Example 5. What type of region(s) are the level curves of the function f(x, y) =
√
x2 − y2?

Example 6. What type of region(s) are the level curves of the function h(x, y) = 4x2+y2+1?

Functions of Three or More Variables

We end this section by mentioning that we can do all of these things in more than just two
variables. The issue ends up being that of visualization - with a three-variable function our
graph would be in four dimensions. One way to visualize this is by level surfaces, which
are surfaces of the form f(x, y, z) = k for some constant k.
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Example 7. Find the domain of f if f(x, y, z) = ln(z − y) + xy sin z.

Example 8. Find and analyze the level surfaces of the function f(x, y, z) = x2 + y2 + z2.

Example 9. Find and analyze the level surfaces of the function f(x, y, z) = x2 − y2 − z2.
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Section 14.3

Partial Derivatives

Objectives:

• Define the partial derivative with respect to a variable

• Find first and second order partial derivatives of a function

In Calculus I we took derivatives with respect to the single variable in our function. When
dealing with a multi-variable function f there is a similar process. Once we have established
a variable to derive with respect to, we treat all other variables as constants and then apply
the rules from single-variable calculus. This is called the partial derivative of f with
respect to a variable.

Treating one variable constant has the geometric analogue of telling us about “slices” of our
function, as one can imagine from our figure for this section.

Example 1. (Math3D) If f(x, y) = x3 + x2y3 − 2y2, find fx(2, 1) and fy(2, 1).
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Example 2. If f(x, y) = sin

(
x

1 + y

)
, calculate

∂f

∂x

∣∣∣∣
(x,y)=(π,1)

and
∂f

∂y

∣∣∣∣
(x,y)=(π,1)

.

Example 3. Find fx(x, y, z), fy(x, y, z), and fz(x, y, z) of f(x, y, z) = exy ln z.
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When taking second partial derivatives, we simplify the terminology. For example,

fxx = (fx)x =
∂

∂x

(
∂f

∂x

)
is the partial derivative of the function fx with respect to x, and

fyx = (fy)x =
∂

∂x

(
∂f

∂y

)
is the partial derivative of the function fy with respect to x. The functions fyy and fxy are
defined similarly.

A limit and continuity argument gives us an interesting result known as Clairaut’s Theo-
rem: if f is defined on a disk D ∈ {(x, y) : x, y ∈ R2} and the mixed partial derivatives
fxy and fyx are continuous on that disk, then

fxy = fyx on D.

Example 4. Find all second-order partial derivatives of the function f(x, y) = ln(ax+ by).

38



©2024 John Weeks

Section 14.4

Tangent Planes and
Linear Approximations

Objectives:

• Find the equation of a tangent plane to a surface at a point

• Use differentials to approximate numerical values of functions

Tangent Planes

(Math3D) Now that we have shown how to find tangent lines to a function at a point in
the x and y directions, we can define the tangent plane to a function at a point to be the
plane containing both of these tangent lines. Say our function is z = f(x, y) and our point
is (x0, y0, z0). The formulas for these tangent lines are

y = y0, z = fx(x0, y0)(x− x0) + z0 and x = x0, z = fy(x0, y0)(y − y0) + z0.

Combining these two equations into one plane gives us the equation of the tangent plane
to a surface z = f(x, y) at a point (x0, y0, z0):

z − z0 = fx(x0, y0)(x− x0) + fy(x0, y0)(y − y0).
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Example 1. Find the tangent plane to the elliptic paraboloid z = 2x2 + y2 when x = 1 and
y = 1.

Example 2. (Math3D) Find the equation of the tangent plane to the surface f(x, y) = ex−y

at the point (2, 2, 1).

Example 3. Estimate
√
4.03 using differentials.
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Differentials

Just like how in Calculus I we used differentials to find approximate values of functions close
to a fixed point, we have a similar formula for the differential in multi-variable calculus.

Calculus I

Calculus III

Example 4. For the function f(x, y) = x5y3, find ∆z and dz from (1, 1) to (1.01, 1.02).

Example 5. Approximate f(x, y) = 1− xy cos(πy) at (1.02, 0.97).
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Example 6. Use differentials to estimate the amount of tin in a closed tin can with diameter
8 cm and height 12 cm (measured from the outside) if the tin is 0.04 cm thick.
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Section 14.5

The Chain Rule

Objectives:

• Use the chain rule to take derivatives of multi-variable functions whose variables are
single variable functions

• Use the chain rule to take derivatives of multi-variable functions whose variables are
multi-variable functions

• Solve related rates problems using the chain rule

Chain Rule, Part I

A convenient way to write the chain rule in Calculus I was this: for a function f(x) = y
where x is itself a function x = g(t),

dy

dt
=

dy

dx

dx

dt
.

In multiple variables, this rule stays virtually the same. However, we must take care since, in
a function z = f(x, y), both x and y may be functions of t. If indeed x = x(t) and y = y(t),
it is a calculation using differentials to show that

dz

dt
=

∂z

∂x

dx

dt
+

∂z

∂y

dy

dt
.

NOTE: The notation for derivatives “d” and partial derivatives “∂” are used with respect
to how many independent variables are present in each function. z = f(x, y) has two
independent variables, so we can write ∂z

∂x
and ∂z

∂y
. However, since both x and y can be

written in terms of t, z = f(x(t), y(t)) = g(t) has only one independent variable, hence dz
dt
.
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Example 1. Find
dz

dt
if z = (sin 2t)2(cos t) + 3(sin 2t)(cos t)4.

In the problems to come, the intermediate variables (usually x and y) will be specified, but it
is always possible to use common elements of a function to make taking its derivative easier
by applying the chain rule.

Example 2. Find
dz

dt
if z =

x− y

x+ 2y
, x = eπt, and y = e−πt.
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Chain Rule, Part II

The chain rule has even more utility when the intermediate variables (the roles of x and y
so far) are functions of several variables. The following formulas are useful:

Chain Rule Formulas

If z = f(x, y), x = g(s, t), and y = h(s, t), then

∂z

∂s
=

∂z

∂x

∂x

∂s
+

∂z

∂y

∂y

∂s
and

∂z

∂t
=

∂z

∂x

∂x

∂t
+

∂z

∂y

∂y

∂t
.

In general, if u = f(x1, x2, . . . , xn) and each xi is a function of t1, . . . , tm,

∂u

∂ti
=

∂u

∂x1

∂x1

∂ti
+

∂u

∂x2

∂x2

∂ti
+ · · ·+ ∂u

∂xn

∂xn

∂ti
.

Example 3. If z = ex sin y, where x = st2 and y = s2t, find
∂z

∂s
and

∂z

∂t
.

Example 4. Write out the Chain Rule formula for the case of a function z = f(x, y) if
x = g(u, v, w) and y = h(u, v, w).
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Example 5. If u = x4y + y2z3, where x = rset, y = rs2e−t, and z = r2s sin(t), find
∂u

∂s

∣∣∣∣
(r,s,t)=(2,1,0)

.

Example 6. The radius of a circular cylinder is decreasing at a rate of 2 cm/s while the
height is increasing at a rate of 5 cm/sec. At what rate is the volume of the cylinder changing
when the radius is 80 cm and the height is 360cm?
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Section 14.6

Directional Derivatives and the
Gradient Vector

Objectives:

• Define the directional derivative to a function at a point

• Find the gradient vector and use it to determine direction and magnitude with the
greatest rate of change

• Revisit tangent planes with a new definition using the gradient vector

Defining the Directional Derivative

(Desmos, Math3D) Now that we have found the slope of tangent lines to a surface with
respect to the x- and y-directions, how can we use these to determine the slope of a tangent
line at a point (x0, y0, z0) from a different direction? A great tool at our disposal is the fact
that we approach the point from a line, so a linear combination of fx(x0, y0) and fy(x0, y0)
ends up doing the trick.

The directional derivative of z = f(x, y) at (x0, y0) in the direction of a unit vector
u = ⟨a, b⟩ is

Duf(x0, y0) = fx(x0, y0)a+ fy(x0, y0)b = ⟨fx(x0, y0), fy(x0, y0)⟩ · ⟨a, b⟩.

NOTE: The vector ∇f(x, y) = ⟨fx(x, y), fy(x, y)⟩ is so prevalent in Chapter 16 that we will
go ahead and define it as the gradient of z = f(x, y). ∇f reads as “del f” or “grad f”.
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Example 1. If f(x, y, z) = x2y + y2z, find Duf(1, 2, 3) where u =

〈
2

3
,−1

3
,
2

3

〉
.

Example 2. Find the directional derivative Duf(x, y) if f(x, y) = x3 − 3xy + 4y2 and u is

the unit vector given by angle θ =
π

6
.

Example 3. Find the directional derivative of f(x, y) = ex sin y at the point (0, π
3
) in the

direction of the vector v = ⟨−6, 8⟩.
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Maximum Rate of Change

We now observe the first use of the gradient, and it is a bit surprising. We know the
directional derivative is defined as

Duf(x0, y0) = ⟨fx(x0, y0), fy(x0, y0)⟩ · u = ∇f(x0, y0) · u,

but what is the maximum value of Du at (x0, y0, z0)? In what direction does f have the
maximum rate of change from (x0, y0, z0)?

For both of these questions, we use the dot product definition to write Duf(x0, y0) =
|∇f(x0, y0)||u| cos θ = |∇f(x0, y0)| cos θ.

1. The maximum value is only possible when cos θ = 1 ⇒ θ = 0, which would mean
∇f(x0, y0) is in the same direction as u.

2. This maximum value is |∇f(x0, y0)| · (1) = |∇f(x0, y0)|.

Example 4. What is the minimum value of Duf(x0, y0)? In what direction would we have
to travel from the starting point?

Example 5. (a) If f(x, y) = xey, find the rate of change of f at the point P (2, 0) in the
direction from P to Q(1

2
, 2). (b) In what direction does f have the maximum rate of change?

What is this maximum rate of change?
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Example 6. Find the maximum rate of change of f(x, y, z) = x ln(yz) at the point (1, 2, 1
2
).

Give the direction in which it occurs.

Tangent Planes to Level Surfaces

So far we have been able to find tangent planes to functions of the form z = f(x, y). However,
we can sometimes find tangent planes to functions where z’s involvement is a bit more
complicated. In particular, any parameterized curve r(t) passing through a level surface of
a function of three variables F satisfies the equation

F (x(t), y(t), z(t)) = k

for some constant k. The chain rule allows us to take the derivative of both sides with respect
to t:

∂F

∂x

dx

dt
+

∂F

∂y

dy

dt
+

∂F

∂z

dz

dt
= 0.

This looks like a dot product waiting to happen. Since ∇F = ⟨Fx, Fy, Fz⟩ and r′(t) =
⟨x′(t), y′(t), z′(t)⟩, we can write

∇F · r′(t) = 0.

Now we know that the gradient vector is perpendicular to the tangent vector of our curve.
We do not have to specify x, y, and z here since they already have values once we find
t, but we want to be parameter-free. So we write everything in terms of a given point
(x0, y0, z0) (now with any curve or parameter) and, using our equation of a line, write the
equation of the tangent plane to the level surface F (x, y, z) = k at P (x0, y0, z0) to be

Fx(x0, y0, z0)(x−x0)+Fy(x0, y0, z0)(y−y0)

+ Fz(x0, y0, z0)(z − z0) = 0.

From this we see that ∇F (x0, y0, z0) is the
normal vector to the tangent plane.
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Example 7. Find the equations of the tangent plane and normal line at the point (−2, 1,−3)
to the ellipsoid

x2

4
+ y2 +

z2

9
= 3.

Example 8. Find the equation of the tangent plane and normal line to the surface x+y+z =
exyz at the point (0, 0, 1).
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Section 14.7

Maximum and Minimum Values

...and Where to Find Them

Objectives:

• Use critical points to find local maxima, local minima, and saddle points

• Find absolute maxima and minina on a closed set in R2

• Utilize the Second Derivatives Test and the Extreme Value Theorem

Local Extrema

We say a function z = f(x, y) has a local maximum at (a, b, f(a, b)) if f(x, y) ≤ f(a, b) for
all (x, y) in a small disk around (a, b). We clarify the local maximum value to be f(a, b)
(the z-value only).

We say a function z = f(x, y) has a local minimum at (a, b, f(a, b)) if f(x, y) ≥ f(a, b) for
all (x, y) in a small disk around (a, b). We clarify the local minimum value to be f(a, b)
(the z-value only).

From last section we know that the maximum rate of change at a point (x0, y0, z0) is equal
to |∇f(x0, y0)|. Hence, if (a, b) is a local maximum (or local minimum, in light of Example
4 from last section), |∇f(x0, y0)| = 0 since the function cannot grow in any direction. So
fx = 0 and fy = 0; we call points where this happens critical points.
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Example 1. Find all critical points of f(x, y) = x2 + y2 − 2x− 6y + 14.

Example 2. Find all critical points of f(x, y) = (x− y)(1− xy).

Just like in Calculus I, not all critical points are max/min values. At some points the function
simply rests before continuing its ascent or descent, sometimes in a different direction. We
call these saddle points.

The Second Derivatives Test helps us determine which points are which.

The Second Derivatives Test

Let (a, b) be a critical point of f . Define

D = D(a, b) =

∣∣∣∣ fxx fxy
fyx fyy

∣∣∣∣ .
a) If D > 0 and fxx(a, b) > 0, then (a, b, f(a, b)) is a local minimum.

b) If D > 0 and fxx(a, b) < 0, then (a, b, f(a, b)) is a local maximum.

c) If D < 0, then (a, b, f(a, b)) is a saddle point.

NOTE: If D = 0, the Second Derivatives Test gives no information.
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Example 3. Find the local maximum and minimum values and saddle points of f(x, y) =
x4 + y4 − 4xy + 1.

Example 4. (Math3D) Find the local maximum and minimum values and saddle points of
f(x, y) = x4 − 2x2 + y3 − 3y.
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Example 5. A box with no lid is to hold 10 cubic meters. Find the dimensions of the box
with a minimum surface area.
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Absolute Extrema

We say a set D is closed in R2 if it contains all of its boundary points. An example would
be a filled-in disk that contains its boundary: D = {(x, y) : x2 + y2 ≤ 1}. We say a set is
bounded if it is contained within some disk, much like the disk above.

Extreme Value Theorem

If f is continuous on a closed, bounded set D in R2, then f attains an absolute maximum
and absolute minimum on D.

Absolute maxima and minima on D are the highest and lowest point(s) in the set D, respec-
tively. Finding critical points helps us search for any interior point in our set, but we need
to search the boundary of D to make sure the highest point isn’t on the edge. So we follow
these instructions:

1. Find the values of the function f at the critical points of f in our set D.

2. Find the highest and lowest values on the boundary of D.

3. The largest of the values from steps 1 and 2 is the absolute maximum value; the
smallest of these values is the absolute minimum value.

Example 6. (Math3D) Find the absolute maximum and minimum values of the function
f(x, y) = x2 − 2xy + 2y on the rectangle D = {(x, y) : 0 ≤ x ≤ 3, 0 ≤ y ≤ 2}.
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Example 7. Find the absolute extrema of f(x, y) = x2 + y2 − 2x on the closed triangular
region with vertices (2, 0), (0, 2), and (0,−2).
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Section 14.8

Langrange Multipliers

Objectives:

• Use Lagrange multipliers to find extreme values on a boundary

In Example 5 of our previous section we were asked to minimize a surface area function
subject to a constraint that V = xyz = 10. That is, our goal was to minimize A =
2xy + 2xz + 2yz subject to V = xyz = 10. In general, whenever we are asked tot

Minimize/Maximize f(x1, . . . , xn)

Subject to: g(x1, . . . , xn) = k,

we can use the method of Lagrange multipliers to help find our answer.

In the figure above, say our level curves of f(x, y) are given by the upward-facing curves and
our constraint is labeled by g(x, y) = k (in the 2D case). The point seems to be the largest
f(x, y) can go on that curve, and we can observe that here the level curve of f and the space
curve g are tangent to each other. This is because at this point the level curve of f(x, y)
touches the level curve only once, meaning it cannot grow beyond this level curve.

Since this level curve f(x, y) = c and g(x, y) = k have a common tangent line, their normal
lines must be parallel. Since those normal lines each have slope determined by the directions
of ∇f and ∇g respectively, we know the gradient vectors are scalar multiples of each other
at this point - i.e.,

∇f = λ∇g for some λ.

The number λ is called the Lagrange Multiplier.
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Although it is harder to visualize, this same logic translates into any larger number of
dimensions. Hence we have a new algorithm for how to minimize/maximize functions subject
to a constraint:

Method of Lagrange Multipliers

To find the maximum and minimum values of f(x, y, z) on the constraint g(x, y, z) = k,

1. Find all values of x, y, z, λ such that

∇f(x, y, z) = λ∇g(x, y, z) and

g(x, y, z) = k.

2. Evaluate f at all points (x, y, z) that result from step 1. The largest of these values is
the maximum value of f ; the smallest is the minimum value of f .

Note that the two equations from step 1 actually expand into four equations if we separate
each coordinate from the first equation into its own separate equation. Hence in many cases
we will be able to find a finite number of solutions, and Step 2 will then be possible.

Example 1. Simplify the method of Lagrange multipliers in two dimensions to solving three
equations with three unknowns x, y, and λ.

Example 2. Simplify the method of Lagrange multipliers in three dimensions to solving four
equations with four unknowns.

Many of these problems require a some ingenuity to solve - we work through several examples
below.
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Example 3. (Math3D) Find the extreme values of the functions f(x, y) = x2 + 2y2 on the
circle x2 + y2 = 1.

60

https://www.math3d.org/HrDww32LN


©2024 John Weeks

Example 4. (Math3D) Find the points on the sphere x2 + y2 + z2 = 4 that are closest to
and farthest from the point (3, 1,−1).
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Example 5. Find the extreme values of the function f(x, y) = x2 − y2 on the disk {(x, y) :
x2 + y2 ≤ 1}.
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Example 6. (Math3D) Find the volume of the largest rectangular box in the first octant
with three faces in the coordinate planes and one vertex in the plane x+ 2y + 3z = 6.
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Section 15.1

Double Integrals over Rectangles

Objectives:

• Find partial integrals of a multi-variable function

• Calculate iterated integrals over an area and use them to find volume of a region

In Calculus I we learned the formula for the definite integral of a function f(x) on an interval
[a, b] was given by ∫ b

a

f(x) dx = lim
n→∞

n∑
i=1

f(x∗
i )∆x,

where ∆x = b−a
n

and x∗
i ∈ [a + (i− 1)∆x, a + i∆x]. These subintervals came from dividing

the interval [a, b] up into n equal spaces. We then evaluated the function at a point inside
each subinterval to get an idea of the height of the function at that interval, and then we
shrunk these subintervals down to have length close to 0 to take a limit.

In Calculus III we will do the same thing with small squares on the xy-plane, as you can see
in the figure for this section. Here the points (x∗

ij, y
∗
ij) are sample points in each subregion of

the function that allow us to approximate the volume underneath with rectangular prisms.
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The double integral of f over the rectangle R is given by the formula∫∫
R

f(x, y) dA = lim
m,n→∞

m∑
i=1

n∑
j=1

f(x∗
ij, y

∗
ij)∆A.

We will focus less on the formula itself in this course and more on how these subdivisions
are made. Note that the areas of the rectangular regions in our above image can be found
by calculating ∆x∆y, so when we are integrating over a rectangle we will often replace dA
with dx dy or dy dx and integrate accordingly.

When we integrate by either dx or dy, we will integrate holding the other variable y or x
constant, just like we were when taking derivatives. An integral over a region where one
variable is held constant is called a partial integral, while the composition of these partial
integrals like in Examples 1 and 2 is called an iterated integral.

Example 1. Find (a) A(y) :=

∫ 2

0

x+ 3x2y2 dx and (b) B(x) :=

∫ 3

0

x+ 3x2y2 dy.

Example 2. Find (a)
∫ 3

0
A(y) dy and

∫ 2

0
B(x) dx.

In this chapter we will focus on broadening the type of regions we can integrate over. We
will begin with rectangles in this section, move toward polygons and circles, and finally end
with regions that can be “transformed” into one of these two.
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We found in Examples 1 and 2 that switching the order of integration in the problem
gave us the same answer. The following theorem helps us know when this is possible:

Fubini’s Theorem

If f is continuous on a closed and bounded region R, then switching the order of integration
is possible. In particular, if R = {(x, y)|a ≤ x ≤ b, c ≤ y ≤ d}, then∫∫

R

f(x, y) dA =

∫ b

a

∫ d

c

f(x, y) dy dx =

∫ d

c

∫ b

a

f(x, y) dx dy.

If our function f(x, y) can be separated into the product of two single-variable functions
g(x)h(y), then∫ b

a

∫ d

c

g(x)h(y) dy dx =

∫ b

a

g(x) dx

∫ d

c

h(y) dy =

∫ d

c

∫ b

a

g(x)h(y) dx dy.

Example 3. Evaluate the double integral
∫∫

R
(x − 3y2) dA on the region R = {(x, y)|0 ≤

x ≤ 2, 1 ≤ y ≤ 2}.

Example 4. Evaluate
∫∫

R
y sin(xy) dA where R = [1, 2]× [0, π].
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Example 5. Find
∫∫

R
sinx cos y dA if R = [0, π

2
]× [0, π

2
].

Notably, since sinx cos y is positive inside this rectangle, this formula gives us the volume
under the surface within this rectangle.

Example 6. Find
∫∫

R
ye−xy dA where R = [0, 2]× [0, 3].
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Recall that a function f(x) is even if it is symmetric across the y-axis (i.e., f(x) = f(−x)).
We also say a function f(x) is odd if it is symmetric about the origin (i.e., f(−x) = −f(x)).
If f(x) = xn, f is an even function if n is even, and f is an odd function if n is odd.

Similarly, we will say that a function f(x, y) is even/odd in x if (for even) f(−x, y) = f(x, y)
or (for odd) f(−x, y) = −f(x, y). We define even/odd in y similarly.

Example 7. (Math3D) Evaluate the integral

∫∫
R

xy

1 + x4
dA on the rectangle

R = {(x, y)| − 1 ≤ x ≤ 1, 0 ≤ y ≤ 1}.

Example 8. (Math3D) Find the volume of the solid lying under the elliptic paraboloid
x2

4
+

y2

9
+ z = 1 and above the rectangle R = [−1, 1]× [−2, 2].
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Example 9. Find the volume of the solid enclosed by the surface z = 1 + x2yey and the
planes z = 0, x = ±1, y = 0, and y = 1.
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Section 15.2

Double Integrals over
General Regions

Objectives:

• Calculate an iterated integral with functions as limits of integration

• Find the volume of regions bounded by general functions

Example 1. Evaluate
∫∫

D
(x + 2y) dA where D is the region bounded by the parabolas

y = 2x2 and y = 1 + x2.
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As we saw from Example 1, it is possible to set functions to be our limits of integration.
On a technical level, we are setting our integrand to be equal to 0 outside of our area of
integration, then applying the same practices we would when integrating over a rectangle.
However, this rarely comes up in practice when solving integrals.

NOTE: Be careful when switching the order of integration if there are functions in the limits
of integration - we will likely need to change the limits to ensure we are integrating over the
same area.

Example 2. Sketch the region D bounded by y = x, y = 4, and x = 0. Then set up, but do
not solve, the integral

∫∫
D
y2exy dA in two different ways. Which one is easier to integrate

by?
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Example 3. Evaluate the integral
∫∫

D
xy dA where D is enclosed by the curves y = x2,

y = 3x in two different ways.
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Example 4. Evaluate the iterated integral
∫ 1

0

∫ 1

x
sin(y2) dy dx.

Example 5. (Math3D) Set up, but do not solve, an integral equal to the volume of the
region bounded by the coordinate planes and the plane z = 1− x− y.
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Example 6. Find the volume of the solid under the plane 3x + 2y − z = 0 and above the
region enclosed by the parabolas y = x2 and x = y2.

Example 7. Find the volume of the solid in the first octant under the plane z = x + y,
above the surface z = xy, and enclosed by the surfaces x = 0, y = 0, and x2 + y2 = 4.
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Section 15.3

Double Integrals in
Polar Coordinates

Objectives:

• Apply a change of variables from rectangular coordinates to polar coordinates

• Find the volume of regions with polar curves tracing out their base

Revisiting Polar Coordinates

At the end of MATH 152 (Section 10.3) we covered polar coordinates and how to graph
functions using the variables r and θ. Although it is possible to graph rectilinear areas with
polar coordinates, we will usually only use this coordinate system whenever it is easier to
refer to radii and angles rather than x’s and y’s.

Example 1. Write the function (x2 + y2)2 = 2xy in polar coordinates.
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Converting between Rectangular and Polar Coordinates

x = r cos(θ), y = r sin(θ); or θ = arccos
(x
r

)
= arcsin

(y
r

)
tan(θ) =

y

x
, or θ = arctan

(y
x

)
x2 + y2 = r2, or r =

√
x2 + y2

Example 2. Find the polar coordinates of the given rectangular point if r ≥ 0 and 0 ≤ θ ≤
2π.

a) (
√
3, 1)

b) (−
√
3, 1)

c) (−1,−1)

Example 3. Find the rectangular coordinates of the polar point

(
2,

2π

3

)
.
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Integrating over Polar Coordinates

Say we are integrating over a portion of a circle’s sector, like shown in the figure for this
section. Instead of dividing this area into rectangles, we radially subdivide it. Focusing on
one of these small regions, we see the width of any of the edges lining up with a radius is
(ri − ri−1), where the ri are radii of the circular arcs making up the region.

Recall that the formula for the area of a sector is A =
1

2
r2θ, where θ is the change in angle

in the sector - in our graphic this is labeled ∆θ. This region is the difference of two sectors,
so the area of our region is given by

Aouter sector − Ainner sector =
1

2
r2i (∆θ)− 1

2
r2i−1(∆θ)

Grouping together → =
1

2
(r2i − r2i−1)(∆θ)

Difference of squares → =
1

2
(ri − ri−1)(ri + ri−1)(∆θ)

Grouping together → = (ri − ri−1)︸ ︷︷ ︸
∆r

ri + ri−1

2
(∆θ)

Replacing factors → = r∗i (∆r)(∆θ),

where r∗i is the average of the two radii ri and ri−1. At the level of differentials, the two radii
ri and ri−1 get closer together, so we can replace r∗i with r and we get

dA = r dr dθ.

Therefore the double integral of f over a polar region D is given by∫∫
D

f(x, y) dA =

∫∫
D

f(r cos θ, r sin θ) r dr dθ.
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Example 4. (Math3D) Evaluate

∫∫
R

y2

x2 + y2
dA, where R is the region that lies between

the circles x2 + y2 = 1 and x2 + y2 = 4.

Example 5. Find the volume of the solid bounded by the plane z = 0 and the paraboloid
z = 1− x2 − y2.
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Example 6. Evaluate
∫∫

R
(2x − y) dA, where R is the region in the first quadrant enclosed

by the circle x2 + y2 = 4 and the lines x = 0 and y = x.

Example 7. Evaluate
∫∫

D
e−x2−y2 dA, where D is the region bounded by the semicircle

x =
√

4− y2 and the y-axis.
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Example 8. (Math3D) Write the integral
∫ 4

0

∫ √
4x−x2

0

√
x2 + y2 dy dx in polar coordinates.

(You do not need to solve the integral.)

Example 9. Use double integrals to find the area enclosed by one loop of the four-leaved
rose r = cos(2θ).
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Example 10. (Math3D) Find the volume of the region inside the sphere x2 + y2 + z2 = 16
and outside the cylinder x2 + y2 = 8.
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Section 15.4 & 15.5

Applications of Double Integrals
(Center of Mass and Surface Area)

Objectives:

• Calculate mass and center of mass on an object given its density function

• Find the surface area of a three-dimensional region

Center of Mass

Example 1. Find the mass and center of mass for the following discrete system:

x = −1
2kg

x = 0.5
3kg

x = 2
1kg
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Center of Mass

Given a lamina occupying a two-dimensional region D and with a density function ρ(x, y)
(“=mass

area
”), the mass of D is given by

m =

∫∫
D

ρ(x, y) dA.

Themoment about the x-axisMx for the lamina D, and respectively themoment about
the y-axis My, is given by

Mx =

∫∫
D

yρ(x, y) dA and My =

∫∫
D

xρ(x, y) dA.

The center of mass (x, y) of a lamina D is given by

x =
My

m
=

∫∫
D

xρ(x, y) dA∫∫
D

ρ(x, y) dA
and y =

Mx

m
=

∫∫
D

yρ(x, y) dA∫∫
D

ρ(x, y) dA
.

Example 2. Find the mass and center of mass of a triangular lamina with vertices (0, 0),
(1, 0), and (0, 2) if the density function is ρ(x, y) = 1 + 3x+ y.
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Example 3. Find the mass and center of mass for the lamina D, where D := {(x, y)|1 ≤
x ≤ 3, 1 ≤ y ≤ 4} and ρ(x, y) = y2.

Surface Area Recall from Section 13.3 that the formula for finding the arc
length of a curve s(t) = (x(t), y(t), z(t)) for a ≤ t ≤ b is given by

∫ b

a

√(
dx

dt

)2

+

(
dy

dt

)2

+

(
dz

dt

)2

dt.

We can extend this formula to find the surface area of a surface S by turning it into a double
integral over the integral. We can estimate the surface area of a small region for our surface
S as the area of a parallelogram - one edge is determined by the change in x, fx, and the
other by the change in y, fy.

We know from Section 12.4 that the area of a parallelogram can be determined by finding the
length of a cross product, giving us the following formula for surface area (for more details
on how this happens, see pages 1026-1027 of our textbook): for a surface S with equation
z = f(x, y) for (x, y) in a region D,

A(S) =

∫∫
D

√
[fx(x, y)]2 + [fy(x, y)]2 + 1 dA.

Note the similarity to the arc length formula (think 1 = fz =
∂f
∂z

= ∂z
∂z
). We will discuss this

more in Section 16.6.
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Example 4. Find the surface area of the part of the surface z = x2 + 2y that lies above the
triangular region T in the xy-plane with vertices (0, 0), (1, 0), and (1, 1).

Example 5. Find the area of the part of the paraboloid z = x2 + y2 that lies under the
plane z = 9.
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Section 15.6

Triple Integrals

Objectives:

• Calculate iterated integrals with three separate instances of integration

• Find integrals over a volume of space

By a similar method to how we extended into three-dimensions in Section 15.1 - integrating
a function z = f(x, y) over an xy-region - we can also define an integral in four dimensions
where we integrate a function w = f(x, y, z) over an xyz-volume. The triple integral of a
continuous function f over the box E = {(x, y, z) : a ≤ x ≤ b, c ≤ y ≤ d, r ≤ z ≤ s} is∫∫∫

E

f(x, y, z) dV =

∫ s

r

∫ d

c

∫ b

a

f(x, y, z) dx dy dz.

This is a consequence of Fubini’s Theorem, which generalizes to three-dimensions, and an-
other consequence is that switching the order of integration does not cause any issues over
this closed and bounded region as long as we take care to change the limits accordingly.

Example 1. How many ways can we set up a triple integral by switching the orders of
integration?
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Example 2. (Math3D) Write an integral finding the volume of this region, then rewrite it
five other different ways by switching the order of integration.

Example 3. Evaluate
∫∫∫

E
z dV , where E is the solid tetrahedron bounded by the four planes

x = 0, y = 0, z = 0, and x+ y + z = 1.
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Example 4. Evaluate
∫∫∫

E
sin y dV , where E lies below the plane z = x and above the

triangular region with vertices (0, 0, 0), (π, 0, 0), and (0, π, 0).

Example 5. (Math3D) Find the value of
∫∫∫

E
z dV , where D is bounded by the cylinder

y2 + z2 = 9 and the planes x = 0, y = 3x, and z = 0 in the first octant.
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Example 6. Find the integral
∫ 1

0

∫ 1

0

∫ 2−x2−y2

0
xyez dz dy dx.

Example 7. Evaluate
∫∫∫

E

√
x2 + z2 dV where E is the region bounded by y = x2 + z2 and

the plane y = 4.
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Section 15.7

Triple Integrals in
Cylindrical Coordinates

Objectives:

• Convert 3-D rectangular coordinates into cylindrical coordinates

• Evaluate triple integrals of functions using cylindrical coordinates

Whenever it seems appropriate to convert two of our three coordinates into a more circle-
based system than a rectangle-based system, it may be a good idea to switch into using
cylindrical coordinates. A good reference for this is the last example in our previous section
where we needed to switch to polar coordinates to finish the problem.

A cylindrical coordinate is of the form (r, θ, z), where the xy-projection of our point is
put into polar coordinates and our z-coordinate stays the same.

Example 1. (a) Find the cylindrical coordinates for the point rectangular point (3,−3,−7).
(b) Find the rectangular coordinates for the cylindrical point (2, 2π/3, 1).
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Example 2. Write the equations x2 − x+ y2 + z2 = 1 and 2x2 + 2y2 − z2 = 4 in cylindrical
coordinates.

(Math3D) The formula for integrating in cylindrical coordinates is pretty nifty - in fact, we
already integrated with cylindrical coordinates in the last example of the previous section
without even knowing it! (Technically, our variables where (r, y, θ) rather than (r, θ, z) since
we integrated by y first, but the principle still applies.)

We can find the volume E of the cylindrical sectors like those found in the image below by
multiplying the area of the base times the height. Integrating a function f(x, y, z) over z on
this box gives us ∫ u2(x,y)

u1(x,y)

f(x, y, z) dz,

so our volume of the box comes out to be∫∫∫
E

f(x, y, z) dV =

∫∫
D

[∫ u2(x,y)

u1(x,y)

f(x, y, z) dz

]
dA.

We then only need to integrate by the projection of the area below, which is a sector in polar
coordinates! So making the conversion dA = r dr dθ that we discussed back in Section 15.3,
we finally come to the triple integral in cylindrical coordinates:∫

E

f(x, y, z) dV =

∫
E

f(r cos θ, r sin θ, z) r dz dr dθ.
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Example 3. Find the volume of the solid E found with in the cylinder x2 + y2 = 1, below
the plane z = 4, and above the paraboloid z = 1− x2 − y2.

Example 4. Evaluate ∫ 2

−2

∫ √
4−x2

−
√
4−x2

∫ 2

√
x2+y2

(x2 + y2) dz dy dx.
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Example 5. (Math3D) Set up, but do not solve, an integral equal to the volume of the solid
that lies between the paraboloid z = x2 + y2 and the sphere x2 + y2 + z2 = 2.

Example 6. Evaluate
∫∫∫

E
(x − y) dV , where E is the solid that lies between the cylinders

x2 + y2 = 1 and x2 + y2 = 16, above the xy-plane, and below the plane z = y + 4.
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Section 15.8

Triple Integrals in
Spherical Coordinates

Objectives:

• Convert 3-D rectangular coordinates into spherical coordinates

• Evaluate triple integrals of functions using spherical coordinates

Introducing Spherical Coordinates

Even though cylindrical coordinates seem to be a simple modification of polar coordinates
to three dimensions, there is maybe one that is more intuitive. Instead of discussing points
related to where they are on a cylinder, what about pinpointing where they are on a sphere?
A sphere seems the more appropriate three-dimensional analogue of a circle anyway. Al-
though cylindrical coordinates are certainly useful, we will also find lots of use in converting
points into spherical coordinates.

The schematic for the spherical coordinate system is given above. Here, ρ denotes the
radius of the sphere, θ the angle the xy-projection of the point makes with the positive
x-axis, and ϕ the angle the point-vector makes with the positive z-axis (in the appropriate
plane).

This placement of ϕmight seem strange, since you might expect ϕ to be the angle of elevation
for P . In general it is a bit easier to talk about the angle ϕ as coming from a fixed axis: the
positive z-axis.

It is also very easy to make duplicate points in this system, so we are careful to restrict
ρ ≥ 0, 0 ≤ θ ≤ 2π, and 0 ≤ ϕ ≤ π.
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(Math3D) The schematic below helps us find the following formulas for converting into
spherical coordinates:

Converting To and From Spherical Coordinates

ρ =
√

x2 + y2 + z2

z = ρ cosϕ; r = ρ sinϕ;

x = ρ sinϕ cos θ; y = ρ sinϕ sin θ

ρ ≥ 0, 0 ≤ θ ≤ 2π, 0 ≤ ϕ ≤ π

Example 1. Convert
(
2,

π

4
,
π

3

)
from spherical to rectangular coordinates.

Example 2. Convert (0, 2
√
3,−2) from rectangular to spherical coordinates.

Example 3. Write the equations z =
√
x2 + y2 and z = x2 − y2 in spherical coordinates.
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Integrating over Spherical Coordinates

In previous iterations of this practice where learned how to integrate over a new coordinate
system, it was easy to calculate the area or volume of the slice we were integrating. Although
we have the tools to do the same here thanks to the Mean Value Theorem (see textbook
Exercise 49), we will take a simplistic approach.

If like in previous sections we “spherically subdivide” a space like we did in the above graphic,
we see our subregions start to resemble rectangular boxes. Since the volume of these is lwh,
it seems worth it to find this volume.

The area of the red “rectangle” is simplest to find: the side closest to the xy-plane beneath
it has length ∆ρ (or ρi+1 − ρi, as we would use back in Section 15.3), and the side closest
to the origin is a circular arc of length changing with the angle ϕ, so given the arc length
formula s = rϕ it has length ρi∆ϕ.

The remaining side of the box varies with the angle θ, so it is a circular arc as well. But the
circle making the arc is a smaller slice from the larger sphere. The radius of that small slice
can be found the same way we found r on the previous page, which had formula ρ sinϕ. So
using the circular arc formula, this length equals ρi sinϕi(∆ϕ).

Multiplying these together using the volume formula and applying differentials, we find that

dV = ρ2 sinϕ dρ dϕ dθ.

Therefore, the triple integral of f over a spherical region E is given by∫∫∫
E

f(x, y, z) dV =

∫∫∫
E

f(ρ sinϕ cos θ, ρ sinϕ sin θ, ρ cosϕ) ρ2 sinϕ dρ dϕ dθ.
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Example 4. Set up, but do not solve, the integral

∫ 3

−3

∫ √
9−x2

0

∫ √
9−x2−y2

0

z
√

x2 + y2 + z2 dz dy dx

by converting it into spherical coordinates.

Example 5. Evaluate
∫∫∫

B
e(x

2+y2+z2)3/2 dV , where B is the unit ball
{(x, y, z)|x2 + y2 + z2 ≤ 1}.
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Example 6. (Math3D) Find the volume of the solid that lies above the cone z =
√

x2 + y2

and inside the sphere x2 + y2 + z2 = z.

Example 7. Evaluate the integral
∫ 2

−2

∫ √
4−x2

−
√
4−x2

∫ 2+
√

4−x2−y2

2−
√

4−x2−y2
(x2 + y2 + z2)3/2 dz dy dx.

98

https://www.math3d.org/jtuA2DKk4


©2024 John Weeks

Section 15.9

Change of Variables in
Multiple Integrals

T−−−−−−−−−−−→

Objectives:

• Transform an area we don’t know how to integrate over into an area we can integrate
over

• Apply the Jacobian of a transformation to solve integrals over a more general realm of
areas

The Jacobian

The regions we have integrated over so far this chapter have been convenient for the most
part since very few of them have required us to solve multiple different integrals to find one
value. In the case that areas of integration become more unruly, we have one final tool up
our sleeve: changing the outline of a difficult area to look like an easy area. We have already
done this by converting into polar, cylindrical, and spherical coordinates - this is a more
general approach.

We define a transformation to be a one-to-one function from a region R into a region S.
Let’s say that our region R is in terms of variables u and v and our region S is in terms of
x and y - then if we assume the transformation is linear then we only need to see where x
and y to see where the whole function goes. The Jacobian of a transformation given by
x = g(u, v) and y = h(u, v) is given by

∂(x, y)

∂(u, v)
=

∣∣∣∣∣∣∣∣
∂x

∂u

∂x

∂v

∂y

∂u

∂y

∂v

∣∣∣∣∣∣∣∣ =
∂x

∂u

∂y

∂v
− ∂x

∂v

∂y

∂u
.
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Example 1. Find the Jacobian of the transformation x = peq and y = qep.

Example 2. Find the Jacobian of the transformation from polar to rectangular coordinates.

Changing Variables of Integration

As the last example might suggest, the Jacobian plays a role in replacing variables when
integrating. If we are integrating with respect to variables we don’t want to integrate by, we
can always apply a change of variables from region R to region S to get the formula∫∫

R

f(x, y) dA =

∫∫
S

f(x(u, v), y(u, v))

∣∣∣∣∂(x, y)∂(u, v)

∣∣∣∣ du dv.
The proof of this formula can be found in pages 1053-1056 of the textbook.

Steps to Apply a Change of Variables

Given a transformation T from a region R in terms of x and y to a region S in terms of u
and v, follow these steps to calculate the integral

∫∫
R

f(x, y) dA:

1. Calculate the Jacobian
∂(x, y)

∂(u, v)
(derivatives of variables in first region with respect to

the second)

2. Use the transformation T : R → S to find the new area of integration.

3. Apply the variable change to the integrand f(x(u, v), y(u, v)) and integrate.
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Example 3. Evaluate ∫∫
R

x− y

x+ y
dA,

where R is the region enclosed by x− y = 0, x− y = 1, x+ y = 1, and x+ y = 3.

Example 4. Set up, but do not solve, the integral
∫∫

R
(4x + 8y) dA, where R is the paral-

lelogram with vertices (−1, 3), (1,−3), (3,−1), and (1, 5); applying the change of variables
x = 1

4
(u+ v) and y = 1

4
(v − 3u).

x

y

−5 −3 −1 1 3 5

−5

−3

−1

1

3

5

(−1, 3)

(1,−3)

(3,−1)

(1, 5)
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Example 5. Evaluate the integral
∫∫

R
e(x+y)/(x−y) dA, where R is the trapezoidal region with

vertices (1, 0), (2, 0), (0,−2), (0,−1).

Example 6. Evaluate the integral
∫∫

R
sin(9x2 + 4y2) dA, where R is the region in the first

quadrant bounded by the ellipse 9x2 + 4y2 = 1.
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Section 16.1

Vector Fields

Objectives:

• Identify vector fields in their graphical representations

• Revisit the gradient as a vector field

(Math3D) We define a vector field in n dimensions to be a function F that assigns to each
point (x1, . . . , xn) in a region D ⊂ R2 an n-dimensional vector, F(x1, . . . , xn). Most physical
applications of vector fields are in two and three dimensions - we will keep to those two
dimension sizes in this chapter.

Example 1. Find the vector field of gravity.
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Example 2. Match the following vector fields with their graphical representations.

I) F(x, y) = ⟨x,−y⟩ II) F(x, y) = ⟨y, x− y⟩

III) F(x, y) = ⟨y, y + 2⟩ IV) F(x, y) = ⟨y, 2x⟩

V) F(x, y) = ⟨sin y, cosx⟩ VI) F(x, y) = ⟨cos(x+ y), x⟩

104



©2024 John Weeks

Recall from Chapter 14 that we defined the gradient of a function f(x, y) to be (∇f)(x, y) =
⟨fx(x, y), fy(x, y)⟩. Note ∇f assigns a point to a vector - that is the definition of a vector
field.

Example 3. (Math3D) Find the gradient vector field of f(x, y) = 1
2
(x− y)2.

Example 4. Find the gradient vector field of f(x, y, z) = x2yey/z.
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Section 16.2

Line Integrals

Objectives:

• Calculate line integrals as single-variable integrals over a parameterized space curve

• Apply line integrals to vector fields

Line Integrals in Space

Example 1. Find the length of the parameterized curve x = r cos t, y = r sin t from 0 ≤ t ≤
θ.

In single-variable calculus we would find the area under a curve using approximating rect-
angles. We can do the same single-variable analysis in multiple variables by taking a cross-
section of a surface. The result is a space curve that we can integrate with respect to a
parameter. This is called a line integral.
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Example 2. (Math3D) Find the line integral
∫
C
x2 − y2 ds where C : x = t, y = 2 from

0 ≤ t ≤ 2.

We do not need to limit ourselves to horizontal or vertical cross-sections; we can take cross-
sections with respect to any piecewise-smooth curve, such as the shape of the figure for
this section:

If we let s denote the arc’s length, then the area of our approximating rectangles is given
by f(x∗

i , y
∗
i )∆s (here (x∗

i , y
∗
i ) is a point chosen in a subinterval on the arc). This is why we

wrote the line integral of f along C as
∫
C
f(x, y) ds in Example 2.

However, the length of C can vary a good bit with changes in x and y (unlike the curve in
our previous example). So we will often parameterize C in terms of another single variable
like t. We know the length of a subinterval of s can be given by the arc length formula we
used in Example 1. So the line integral of f along C can be written finally as

∫
C

f(x, y) ds =

∫ b

a

f(x(t), y(t))

√(
dx

dt

)2

+

(
dy

dt

)2

dt =

∫ b

a

f(x(t), y(t))|r′(t)| dt.
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Example 3. Evaluate
∫
C
(2+x2y) ds, where C is the upper half of the unit circle x2+y2 = 1.

Example 4. Evaluate
∫
C
x2y+sinx dy where C is defined by the vector function r(t) = ⟨t, t2⟩

from 0 ≤ t ≤ π.
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Example 5. Evaluate
∫
C
2x ds, where C consists of the arc C1 of the parabola y = x2 from

(0, 0) to (1, 1) followed by the vertical line segment C2 from (1, 1) to (1, 2).

Example 6. Evaluate
∫
C
y dz + z dy + x dx where C : x = t4, y = t3, z = t4, 0 ≤ t ≤ 1.

As we see here, integrating a curve in three dimensions can be easier if the curve is parametrized
for us already. However, we have to be careful about the differentials being used. For example,
integrating a space curve over just the variable z means we are ignoring the curve’s motion
in any direction other than its projection onto the z-axis.
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For integrals over s in space, the line integral of f along C is what we would expect:∫
C

f(x, y, z) ds =

∫ b

a

f(x(t), y(t), z(t))|r′(t)| dt

=

∫ b

a

f(x(t), y(t), z(t))

√(
dx

dt

)2

+

(
dy

dt

)2

+

(
dz

dt

)2

dt.

Example 7. Evaluate
∫
C
y sin z ds where C is the circular helix given by the equations

x = cos t, y = sin t, z = t, 0 ≤ t ≤ 2π.
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Line Integrals over Vector Fields

Example 8. Find the work done by the force field F(x, y) = x2i− xyj in moving a particle
along a quarter-circle r(t) = cos ti+ sin tj, 0 ≤ t ≤ π/2.

In the previous example we needed to compare directions of the tangent to the curve r(t)
to the direction of the force field at the point F(r(t)). Any perpendicular motion came out
to be 0; any parallel motion measured the force field’s vector there in full. This gives the
formula for the line integral of F along C (also known as work done by F on particle
C): ∫

C

F · dr =
∫
C

F ·T ds =

∫ b

a

F(r(t)) · r′(t) dt.

Example 9. Find
∫
C
F · dr, where F(x, y, z) = xyi + yzj + zxk and C is the twisted cubic

given by x = t, y = t2, z = t3, 0 ≤ t ≤ 1.
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Example 10. Evaluate the line integral
∫
C
F · dr, where F = ⟨xy2,−x2⟩ and C is given by

r(t) = t3i+ t2j, 0 ≤ t ≤ 1.
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Section 16.3

The Fundamental Theorem of
Line Integrals

Objectives:

• Discover the Fundamental Theorem of Line Integrals as a way to make evaluating line
integrals with gradient integrand easier

• Observe line integrals in conservative vector fields

Example 1. For the vector field F(x, y) = ⟨y2, x⟩, calculate
∫
C
F · dr, where

a) C is the curve y = x2 from (0, 0) to (2, 4).

b) C is the line segment connecting (0, 0) to (2, 4).
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Our previous example showed a vector field where two different paths between two points
yield different line integral values. Recall the difference between this and the Fundamental
Theorem of Calculus: ∫ b

a

f(x) dx = F (b)− F (a).

In words, this states that the only info we need to find the integral of a function on an area
is at the endpoints of its antiderivative. But this was clearly not the case in the previous
example; we had the same endpoints but different values in our two parts. The issue is the
lack of a clear stand-in for the antiderivative F .

What if we chose F(x, y) = ⟨y, x⟩ instead? If we think about the gradient as our derivative,
we could ask the question: what function f has ⟨y, x⟩ as its gradient?

The Fundamental Theorem for Line Integrals states that, if F(x) = (∇f)(x, y) for
some function f and C is a smooth curve connecting points a and b, then∫

C

F · dr = f(r(b))− f(r(a)).

A corollary (C) is that, if F = ∇f for some function f ,
∫
C
F · dr is the same value for any

smooth curve C connecting points a and b. We say such a vector field F is conservative.

Example 2. Determine whether the following vector fields are conservative. If they are, find
the function f such that F = ∇f .

1. F(x, y) = (x− y)i+ (x− 2)j

2. F(x, y) = (3 + 2xy)i+ (x2 − 3y2)j

114



©2024 John Weeks

The previous example hints at the following result: if F = P (x, y)i + Q(x, y)j is a vector
field such that

∂P

∂y
=

∂Q

∂x
,

then F is conservative. This result is a consequence of a theorem we will cover later.

Example 3. Evaluate the line integral
∫
C
F · dr, where F(x, y) = (3 + 2xy)i + (x2 − 3y2)j,

and C is the curve given by r(t) = et sin ti+ et cos tj, 0 ≤ t ≤ π.

Example 4. Evaluate
∫
C
F · dr if F = (y2z + 2xz2)i + 2xyzj + (xy2 + 2x2z)k and C : x =√

t, y = t+ 1, z = t2, 0 ≤ t ≤ 1.
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Example 5. Evaluate
∫
C
F · dr where F(x, y, z) = yzexzi+ exzj+ xyexzk and C is any path

connecting (1,−1, 0) and (5, 3, 0).

Example 6. Show the following is equivalent to our corollary (C) above: for any closed
curve C, meaning a curve connecting a point a back to itself,

∫
C
F · dr = 0.
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Section 16.4

Green’s Theorem

Connecting Line Integrals and Double Integrals

Objectives:

• Apply Green’s Theorem to turn line integrals into double integrals or vice versa

While working this next example, consider how solving this line integral over a space curve
is similar to how we have been solving line integrals over vector fields. (Compare to the first
example of the last section.)

Example 1. Evaluate
∫
C
y2 dx+ x dy, where C is defined by r(t) = ⟨t, t2⟩, 0 ≤ t ≤ 2.

As we discussed in the last example of the previous section, a closed curve is a curve whose
beginning and ending points are the same point. A simple closed curve is a curve where
the beginning/end point is the only place where the curve crosses itself. We will use the
symbol

∮
to denote a line integral calculated using its positive orientation, which is a

counterclockwise traversal.
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Green’s Theorem

Let C be a piecewise-smooth simple closed curve and let D be an open region bounded by
C. If P and Q have continuous partial derivatives on D, then∮

C

P dx+Qdy =

∫∫
D

(
∂Q

∂x
− ∂P

∂y

)
dA.

This is another fundamental theorem! Compare this with the Fundamental Theorem of
Calculus again: ∫ b

a

f(x) dx = F (b)− F (a).

Green’s thoerem says that the area over a closed region (in FTC terms: closed interval) is
determined an “antiderivative” (P and Q vs. ∂Q

∂x
− ∂P

∂y
) evaluated at its boundary (think

endpoints). Pages 1097-1098 of our textbook contain a proof that prove this using the
Fundamental Theorem of Calculus.

Example 2. Show using Green’s Theorem that, for any closed curve C and conservative
vector field F,

∫
C
F · dr = 0.
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Example 3. Evaluate
∫
C
x4 dx+xy dy, where C is the triangular curve consisting of the line

segments from (0, 0) to (1, 1), from (1, 1) to (1, 0), and from (1, 0) to (0, 0).

Example 4. Evaluate
∮
C
(3y−esinx) dx+(7x+

√
y4 + 1) dy, where C is the circle x2+y2 = 9.
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Example 5. Evaluate
∮
C
y2 dx+3xy dy, where C is the boundary of the semiannular region

D in the upper half-plane between the circles x2 + y2 = 1 and x2 + y2 = 4.
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Section 16.5

Curl and Divergence

Objectives:

• Define curl and divergence and the role they play in fluid

• Determine whether three-dimensional vector fields are conservative

Green’s Theorem only applies to scenarios in two dimensions. However, as we have seen in
previous chapters, most of the definitions and theorems we have learned about generalize to
larger numbers of dimensions. We now begin building toward three-dimensional versions of
the theorems, picking up some useful definitions along the way.

Vector fields are used in fluid dynamics to measure the flow of water in a space. We say
the curl of a vector field F at a point P is a vector quantity measuring the tendency of the
fluid to rotate in a field around that point. Imagine putting a tiny paddle wheel around the
points P1 and P2 in the left graphic above - which way would the wheels spin?

We say the divergence of a vector field F at a point P is a scalar quantity measuring the
rate of change of fluid flowing through the point P . Look at the amount of fluid flowing into
points P1 and P2 in the right graphic above - is the rate of change positive or negative at
each of these points?
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We now give formulas for these operators. In both we will use the del operator ∇, which
is defined as

∇ =

〈
∂

∂x
,
∂

∂y
,
∂

∂z

〉
.

For example, ∇f = ⟨∂f
∂x
, ∂f
∂y
, ∂f
∂z
⟩, which is the gradient of f .

Curl and Divergence

If F = ⟨P,Q,R⟩ is a vector field defined on R3 and the partial derivatives P , Q, and R exist,
then

a) The divergence of F is ∇ · F =

〈
∂

∂x
,
∂

∂y
,
∂

∂z

〉
· ⟨P,Q,R⟩ = ∂P

∂x
+

∂Q

∂y
+

∂R

∂z
.

b) The curl of F is ∇× F =

∣∣∣∣∣∣
i j k
∂
∂x

∂
∂y

∂
∂z

P Q R

∣∣∣∣∣∣.
Example 1. Find the curl and divergence of the vector field F(x, y, z) = xy2z2i+ x2yz2j+
x2y2zk.
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As our last example hinted, there is a relationship between curl and conservative when it
comes to vector fields. Let’s say we were to define a two-dimensional version of curl (which,
to be clear, we will not call “curl”) for a vector field F = ⟨P,Q⟩. What would its formula
be?

The analogue of the two-dimensional result also holds:

If curlF = 0, then F is a conservative vector field.

Just as the two-dimensional result requires Green’s Theorem, the three-dimensional result
requires Stokes’ Theorem, a generalization of Green’s Theorem for three dimensions!

Example 2. Determine whether F = xyz4i + x2z4j + 4x2yz3k is conservative. If it is, find
a function f such that F = ∇f .

Example 3. If F = ⟨x, ey sin z, ey cos z⟩, find
∫
C
F · dr, where r(t) = ⟨t4, t, 2t2⟩ for 1 ≤ t ≤ 2.

123



©2024 John Weeks

Section 16.6

Parametric Surfaces and Their Areas

Objectives:

• Generalize the method of parameterizing curves to surfaces

• Use double integrals to find the area of a wide array of surfaces

In Chapter 14 we began parameterizing space curves so that we could find arc length. The
analogue here is to parameterize surfaces so that we may find surface area. In this case we
are given two parameters to use rather than one.

Example 1. Parameterize the surface z + 2x+ y = 6.

Example 2. Parameterize the cylinder x2 + z2 = 4 where 0 ≤ y ≤ 3.
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Example 3. Parameterize the graph −5y − 4z + x = 20.

Example 4. Parameterize the part of the sphere x2 + y2 + z2 = 4 above the cone z =√
x2 + y2.
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To approximate the area of a surface parameterized in terms of u and v, let’s begin dividing
it into a series of parallelograms. (Rectangles wouldn’t do so well along oblong edges, plus
we have a good way to specify what the edges of our parallelograms should be.) We can put
our position vector (u∗

i , v
∗
j ) in the corner of our patch (approximating parallelogram) and

calculate tangent vectors r∗u and r∗v in the u and v directions.

What’s the area of this parallelogram? We know area
is b · h. If we are given the length of two connect-
ing sides v1 and v2 of a parallelogram, we know from
Chapter 12 that we can also calculate |v1 × v2|. The
tangent vectors we calculated above already give us
the direction of these sides, so we only need to multi-
ply these directions by the scalar length to get (∆u)r∗u
and (∆v)r∗v respectively.
So we can find the area to be |(∆ur∗u) × (∆vr∗v)| =
|r∗u × r∗v|∆u∆v. As we continue to subdivide, we may
replace these incremental values with differentials. The
rest is what we did back in Section 15.2: now that we
have parameterized our surface, we just need to find
the area of our original space, which is

∫∫
D
1 dA. So

we have our formula:

A(S) =

∫∫
D

|ru × rv| dA,

where ru =
∂x

∂u
i+

∂y

∂u
j+

∂z

∂u
k and rv =

∂x

∂v
i+

∂y

∂v
j+

∂z

∂v
k.

(Think of |ru × rv| as our “Jacobian” from changing variables.)
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Example 5. (Math3D) Find the area of the part of the surface x = z2 + y that lies between
the planes y = 0, y = z, and z = 2.

Example 6. (Math3D) Find the surface area of the part of the surface y = x2 + z2 that lies
inside the cylinder x2 + z2 = 2.
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Example 7. Find the surface area of a sphere of radius ρ.
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Section 16.7

Surface Integrals

Objectives:

• Calculate surface integrals

• Apply surface integrals to double integrals over vector fields

Surface Integrals in Space

A way to write the line integral formula we learned back in Section 16.2 is

∫
C

f(x, y) ds =

∫ b

a

f(x(t), y(t))

√(
dx

dt

)2

+

(
dy

dt

)2

dt =

∫ b

a

f(r(t))|r′(t)| dt.

Finding the integral over a space curve involved first finding the arc length, then applying
the integral structure with the arc length to give appropriate weight to parts of the function
where the curve is longer or shorter (with respect to the parameter). The story with surfaces
is virtually identical: now that we have found how to find surface area, we just need to apply
the integral structure.

By going patch-by-patch, we know the formula for the area of a surface S is A(S) =
∫∫

D
|ru×

rv| dA. Hence the surface integral of f over S is given by∫∫
S

f(x, y, z) dS =

∫∫
D

f(r(u, v))|ru × rv| dA.

Compare this to the line integral formula written above.
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Example 1. Compute the surface integral
∫∫

S
x2 dS, where S is the unit sphere x2+y2+z2 =

1.

Example 2. Evaluate
∫∫

S
y dS, where S is the surface z = x+ y2, 0 ≤ x ≤ 1, 0 ≤ y ≤ 2.

130



©2024 John Weeks

Example 3. Evaluate
∫∫

S
xyz dS where S is the cone with parametric equations x = u cos v,

y = u sin v, z = u, 0 ≤ u ≤ 1, 0 ≤ v ≤ π/2.

Surface Integrals over Vector Fields

(Math3D) Suppose F = ⟨P,Q,R⟩ is a vector field that contains surface S. The amount of
flow that passes through the surface S is called the flux of F across S. Since we only want
to consider the component of F passing directly through the surface, we take its projection
onto the normal vector n. Hence we get the formula∫∫

S

F · dS =

∫∫
S

F · n dS =

∫∫
D

F · (ru × rv) dA.

NOTE: This latter integral allows us to avoid some of the hassle of surface integrals. Using
properties of the cross product, we can find the vector n to have the formula n = ru×rv

|ru×rv | ,
and the rest comes from our discussion of surface integrals on a previous page.

131

https://www.math3d.org/uoBABPi9o


©2024 John Weeks

Example 4. Find the flux of the vector field F(x, y, z) = zi+ yj+xk across the unit sphere
x2 + y2 + z2 = 1.
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Example 5. (Math3D) Find
∫∫

S
(−xi − yj + z3k) · dS where S is the part of the cone

z =
√
x2 + y2 between the planes z = 1 and z = 3 with downward orientation.
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Section 16.8 & 16.9

Stokes’ Theorem and the
Divergence Theorem

Objectives:

• Apply Stokes’ Theorem and Divergence Theorem to solve surface integrals involving
divergence and curl

• Revisit line integrals and discover how to rewrite them as surface or triple integrals

Stokes’ Theorem

Example 1. Back in Section 16.5 we hinted that Stokes’ Theorem is a generalization of
Green’s theorem for three dimensions. Given the tools we have seen so far, guess the formula
for Stokes’ Theorem.
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Stokes’ Theorem

Let S be an oriented piecewise-smooth surface that is bounded by a simple, closed, piecewise-
smooth boundary curve C with positive orientation. Let F be a vector field whose compo-
nents have continuous partial derivatives on an open region in R3 that contains S. Then∮

C

F · dr =
∫∫
S

curlF · dS.

A proof of a special case of this result is found in pages 1135-1136 in the textbook.

Example 2. (Math3D) Evaluate
∫
C
F · dr, where F(x, y, z) = −y2i+ xj+ z2k and C is the

curve of intersection of the plane y + z = 2 and the cylinder x2 + y2 = 1.

Stokes’ Theorem works because:
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Example 3. (Math3D) Use Stokes’ Theorem to compute the integral
∫∫

S
curlF · dS, where

F(x, y, z) = xzi+ yzj+ xyk and S is the part of the sphere x2 + y2 + z2 = 4 that lies inside
the cylinder x2 + y2 = 1 and above the xy-plane.

Stokes’ Theorem works because:
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Divergence Theorem

The next theorem covers a class of regions known as simple solid regions E. For our
purposes, it is enough to know that any bounded region - a region that can be contained
within a rectangular box - is a simple solid region. Note the boundary of E is a closed
surface S, meaning that, like a closed curve, the surface divides space into an “inside” and
an “outside”.

Divergence Theorem

Let E be a simple solid region and let S be the boundary surface of E, given with positive
(outward) orientation. Let F be a vector field whose component functions have continuous
partial derivatives on an open region that contains E. Then∫∫

S

F · dS =

∫∫∫
E

divF dV.

This theorem states that the surface integral of F across the boundary surface of E is equal
to the triple integral of the divergence of F over E. A proof can be found on pages 1141-1143
of our textbook.

Example 4. Find the flux of the vector field F(x, y, z) = zi + yj + xk over the unit sphere
x2 + y2 + z2 = 1.

Stokes’ or Divergence?
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Example 5. (Math3D) Evaluate
∫∫

S
F · dS, where F(x, y, z) = xyi+ (y2 + exz

2
)j+ sin(xy)k

and S is the surface of the region E bounded by the parabolic cylinder z = 1− x2 and the
planes z = 0, y = 0, and y + z = 2.

Stokes’ or Divergence?
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