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Section 0.1

What Are We Doing?

Objectives:

• Understand the premises of linear algebra

Problem: Solving Systems of Linear Equations

In school we are taught how to solve systems of the following form:

x1 + 2x2 = 3

4x1 + 5x2 = 6

There are two typical methods of solution. One, we can solve for one variable in one equation
(x1 = 3−2x2), then substitute all instances of that variable in the other equation with what
that variable is equal to. This is called substitution. Two, we can manipulate both sides
of each equation so that the addition of the two equations eliminates one variable entirely:

−4x1 − 8x2 = −12 (multiplied by − 4)

4x1 + 5x2 = 6 (kept the same)

This latter method is called elimination.
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One way to simplify this method is to simply create a matrix of the coefficients in this
equation (Section 1.1), like this: [

1 2 3
4 5 6

]
Now elimination amounts to adding a scalar multiple of one row to another row:[

1 2 3
4 5 6

]
R2→R2−4R1−→

[
1 2 3
0 −3 −6

]
This bottom row now reads “−3x2 = −6”, which is what we would get from applying
elimination as above. Our next step in solving would involve multiplying both sides of this
equation by −1

3
. In this matrix form, this correlates to multiplying the entire row by a scalar:[

1 2 3
0 −3 −6

]
R2→− 1

3
R2→
[
1 2 3
0 1 2

]
The bottom row now reads “(0x1+)x2 = 2”. At this point, we have solved for a variable,
and we can use back-substitution to solve for all the other variables in our system. This
form of a matrix is called row echelon form (Section 1.2).

We can also substitute x2 back into our equation in the first row by doing our row-adding
operation again: [

1 2 3
0 1 2

]
R1→R1−2R2→

[
1 0 −1
0 1 2

]
This form of the matrix is called reduced row echelon form, and the matrix simply holds
the solution to our system of equations: x1 = −1, and x2 = 2. We have applied what are
called elementary row operations (Section 1.5) to solve a system of linear equations.

Abstraction: Linear Transformations

In the 19th century mathematicians began applying this theory to other systems that acted
like lines. Lines in R2 are characterized by two things: point and slope. In particular, lines
through the origin are only differentiated by their slope. These lines L(x) = rx have two
properties that tell us how points interact with addition and multiplication:

L(x+ y) = L(x) + L(y)

L(rx) = rL(x)

Note that these two properties prevent the line from breaking off (discontinuity), curling in
one direction or the other (changing slope), or stopping at some point (domain restriction).

There are two other very important mathematical objects that share these two properties:
the derivative and the integral.

(f + g)′ = f ′ + g′

(rf)′ = rf ′

∫
(f + g) dx =

∫
f dx+

∫
g dx∫

rf dx = r

∫
f dx
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Objects that satisfy these two properties are called linear transformations (Section 4.1)
- they “act like” lines through the origin. Note that we have replaced the numbers x and y
with functions f and g - we generalize the notion of these two by calling them all vectors,
and the collections in which they live vector spaces (Section 3.1). Just like the systems of
equations we saw in the prior subsection, linear transformations have their own corresponding
matrices based on the systems of equations they create. (There is a caveat here regarding
dimension - Section 3.4.)

Application: Signal Processing

Because these functions can be written as matrices, we can apply matrix operations to
manipulate the data they contain. The picture below in (a) is a depiction of a signal that a
computer might receive from a peripheral, written as a function:

We can see that the noise in the signal is filtered out in the picture given by (b). What
has been done is this: the function above has been approximated as a linear combination
(Section 1.3) of trigonometric functions of the form a0+ak cos(kx)+bk sin(kx) (here a0, ak, bk
are real numbers). Writing more and more terms in this linear combination gives us a better
and better approximation of the original signal until we reach the desired error tolerance.
These are useful since allowing k to be different integers gives us an orthogonal set of
functions (Section 5.5). (Similar methods are used in data compression.)

Remarkably, this application only scratches the surface of where linear algebra can be found.
The theory is perhaps most useful in the study of linear differential equations (Section
6.2), which can even involve partial derivatives (ours will not).

Our course will begin by discussing the theory of matrices, discuss this abstraction of linear
equations to linear transformations, then give introductory theory (orthogonal sets, diago-
nalization of matrices) for where matrices and linear transformations can be applied.
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Section 0.2

The Beauty of Mathematics

Objectives:

• Understand the differences in mathematical pedagogy in calculus versus linear algebra

It’s typical for a mathematics professor to view the subject matter they teach as “beautiful”.
But what does this mean?

Take a look at the picture near the top of the page. Many would find this as a serene image,
and several things can contribute to this.

Perhaps there is an air of familiarity to it: you’ve been at a log cabin and have had pleasant
memories there, or you’ve seen it in other pictures.

Maybe it’s because of how everything connects: the trees surrounding the cabin give off a
feeling of security, while the colorful flowers portrayed give you a glimpse of how beautiful
the view must be from the front porch.

There is also an absence of hustle, bustle, roads, construction, and crowds - this can evoke
a reaction of peace and seclusion.

A mathematics professor thinks their subject is beautiful for the same reasons you might
think this picture is beautiful. It is familiar, it is beautifully connected, and it is a welcome
distraction from other duties.

Mathematicians often rate their happiness in their profession well above average, and it’s
not just about salary. They find a natural beauty to mathematics and are excited to work
with it each day.

4



©2025 John Weeks

However, a test question on a math exam can sometimes feel like this:

Question: Color in the picture with the same colors used in the original.

There are a few colors that are obvious from context: the trees and bushes are green, the
log cabin is brown. Just for fun, I re-colorized this photo by plugging it into an AI, and the
AI was able to nail those colors. (It failed at most of the others.)

But what about the colors of the flowers? It’s a lot easier for a mathematician who feels
comfortable with this picture to remember these colors as pivotal to the experience of the
photo, but as someone seeing the photo for the first time you’d have to truly study it to be
able to recollect these details.

There are two bad approaches to remembering the details of this image:

• The “I’ll just wing it” approach: While there are definitely some details you can
gather from the given context, it’s difficult to finish a question completely without
having done some specific study to each type of question.

• The “memorize every detail” approach: While there are definitely some details
you would have to memorize to recall, it’s difficult to recollect everything within a
timely manner to finish an exam!

The best approach to studying for a math exam is somewhere in the middle.
Look for connections between different parts of this course - you’ll be surprised how
little you have to remember this way. But there will still be some things you’ll want
to recall, if for nothing else then to just save yourself the time of coming up with them.
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Linear algebra is special because of its reliance on theory over computation.

• Computation is the use of a definition, algorithm, or technique applied to a specific

problem. Examples: 2 + 2 = 4,
d

dx
x2 = 2x,

∫ 1

0
x dx =

1

2
.

• Theory is the set of ideas that spur computation forward. We cannot reliably compute
unless theory tells us it’s possible. Examples: the definition of the derivative, the
Riemann sum.

Many engineering calculus courses focus nearly exclusively on building computational skills.
In linear algebra we will add in a focus of building theory skills as well. Here’s an example
of what a theory-based question might look like. (You’ll be doing some of this in the context
of linear algebra yourself in this course!)

Question: Write 84 − 44 into a product of prime factors. (For example, 30 = 2 · 3 · 5.)

This question seems crazy! I have to compute 84, 44, subtract the two, and then just hope
I find the right factors? While this might seem wild on the outset, theory says this type of
question can be solved much more easily:

Difference of squares formula: a2 − b2 = (a− b)(a+ b).

But how does this formula apply? Nothing’s being squared, it’s all being raised to the fourth
power! For this we need to be a bit creative: in order to make this formula work with what’s
given, we have to make a decision: let a = 82 and b = 42.

Note that this works because a2 = (82)2 = 84 and b2 = (42)2 = 44. So a2 − b2 = 84 − 44.
Hence we can rewrite

84 − 44 = a2 − b2 = (a− b)(a+ b)

= (82 − 42)(82 + 42)

= (8− 4)(8 + 4)(82 + 42) = (4)(12)(80).

On the last line of that string of equalities you can see that we used the difference of squares
formula again, this time on (82 − 42). While the product we have is not a product of prime
factors, it is now much easier to factor - we only have to factor 4, 12, and 80.

The goal of learning theory is to make computations as easy as possible. Just as
we would have had a rough time factoring this big number without the difference of squares
formula, we would have an incredibly difficult time understanding linear algebra without
discussing quite a bit of theory.

There will be some sections in this course where you see a lot more definitions and theories
than numbers and computations in this class. That’s okay! We will warm up to this idea a
bit in Section 1-5 and then continue to build upon it in the chapters to come.
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Section 1.1

Matrices

Objectives:

• Define equivalent systems of linear equations

• Solve systems of linear equations using matrices

Recall that a system of linear equations is a collection of equalities of the form

a11x1 + a12x2 + · · ·+ a1nxn = b1

a21x1 + a22x2 + · · ·+ a2nxn = b2
...

...
... =

...

am1x1 + am2x2 + · · ·+ amnxn = bm

where aij is a real number for i ∈ [m], j ∈ [n]. (Here and elsewhere [k][k][k] := {1, 2, . . . , k}.)

Definition 1.1.1. The coefficient matrix of this system of equations compiles the coeffi-
cients of this system in an array where coefficients in the ith row are terms of the ith equality
and coefficients in the jth column are coefficients of the same variable xj.

a11 a12 · · · a1n
a21 a22 · · · a2n
...

...
. . .

...
am1 am2 · · · amn


Note that the matrix has m rows and n columns, and the indices of each entry are indexed
by row, then column (instead of column, then row).
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The augmented matrix of this system of equations adds one more column for the constant
terms to the right of the equality. To show that this extra column is not associated with
another variable, we add a vertical line to distinguish this column. Think of the vertical line
as an “equals sign”. 

a11 a12 · · · a1n b1
a21 a22 · · · a2n b2
...

...
. . .

...
...

am1 am2 · · · amn bm


Example 1.1.1. Solve the below system of equations using substitution and elimination.

3x+ 2y − z = −2

−3x− y + z = 5

3x+ 2y + z = 2

We say that two systems of equations are equivalent if they have the same solution set. In
the above example, using elimination allowed us to get equivalent systems of equations to the
original one given. If we restrict our solution methods to leaving constants on the right-hand
side of the equality and variable terms on the left-hand side, there are three operations to
get equivalent systems:

(I) Switch the order of any two equations.

(II) Multiply both sides of any one equation by a nonzero number.

(III) Add a multiple of one equation to another equation.
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These three operations correspond directly to the following elementary row operations
that can be applied to an augmented matrix:

(I) Switch any two rows.

(II) Multiply a row by a nonzero number.

(III) Add a multiple of one row to another row.

Example 1.1.2. Use elementary row operations to the augmented matrix
[
A|b

]
below so

that a21 = a31 = a32 = 0. Then use back-substitution to solve the system of equations. 3 2 −1 −2
−3 −1 1 5
3 2 1 2



Note that our methods are very similar to those in Example 1 - our solution techniques are
in fact identical. This method of solving a system of equations is called Gauss-Jordan
reduction.

Example 1.1.3. Solve the following system of equations using Gauss-Jordan reduction.

2x1 + x2 = 8

4x1 − 3x2 = 6
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Section 1.2

Row Echelon Form

Objectives:

• Expand use of Gauss-Jordan reduction to overdetermined and underdetermined sys-
tems

• Recognize row echelon form and use reduction to find equivalent systems in this form

• Discover applications of matrices

We ended up with two types of matrices in the examples in the last section. In Example
1.1.2 we ended in row echelon form, which we could then use to find the solution by
using back-substitution. In Example 1.1.3 we continued from this form to reduced row
echelon form, which gave us the solution outright.= We will want a formal definition to
ensure we end up in this form, because some systems of equations are overdetermined or
underdetermined.

Definition 1.2.1. We say that a system of equations as given at the top of Section 1.1 is
overdetermined if there are more equations than there are variables. We say that a system
of equations is underdetermined if there are fewer equations than there are variables.

NOTE: Overdetermined systems are usually inconsistent (i.e., have no solutions), although
they are not necessarily inconsistent. Underdetermined systems are usually dependent sys-
tems, meaning that they have infinitely many solutions, although they are not necessarily
dependent.
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Example 1.2.1. Solve the following system:

x1 + x2 = 1

x1 − x2 = 3

−x1 + 2x2 = −2

Example 1.2.2. Solve the following system:

x1 + x2 + x3 + x4 + x5 = 2

x1 + x2 + x3 + 2x4 + 2x5 = 3

x1 + x2 + x3 + 2x4 + 3x5 = 2
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The final matrix in Example 1.2.1 was in row echelon form:

Row Echelon Form

We say a matrix A is in row echelon form if

(i) All rows consisting entirely of zeros are at the bottom of the matrix.

(ii) The first nonzero entry in each nonzero row is 1.

(iii) If row k has nonzero entries, the number of leading zero entries in row k + 1 is greater
than the number of leading zero entries in row k.
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Here is an example of a matrix in row echelon form. Let ∗ denote a generic number, which
could be zero or nonzero:

1 ∗ ∗ ∗ ∗ ∗
0 1 ∗ ∗ ∗ ∗
0 0 0 1 ∗ ∗
0 0 0 0 1 ∗
0 0 0 0 0 0


Think that there must be a “staircase of zeroes” head-
ing down and to the right. It is okay for the staircase
to be uneven. But the place where you step down must
be a 1 each time.

The final matrix in Example 1.2.2 was in reduced row echelon form:

Reduced Row Echelon Form

We say a matrix A is in reduced row echelon form if

(i) The matrix is in row echelon form.

(ii) The first nonzero entry in each row is the only nonzero entry in its column.

Here is an example of a matrix in reduced row echelon form:
1 0 ∗ 0 0 ∗
0 1 ∗ 0 0 ∗
0 0 0 1 0 ∗
0 0 0 0 1 ∗
0 0 0 0 0 0


Once we isolate the “leading ones”, by which we mean
the first 1 on each row, we check to make sure that
they are the only 1 on their respective columns.
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Example 1.2.3. Solve the system

−x1 + x2 − x3 + 3x4 = 0

3x1 + 2x2 − x3 − x4 = 0

2x1 − x2 − 2x3 − x4 = 0
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Example 1.2.4. In the downtown section of a certain city, two sets of one-way streets
intersect as shown below. The average hourly volume of traffic entering and leaving this
section during rush hour is given in this diagram. Determine the amount of traffic between
each of the four intersections.
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Section 1.3

Matrix Arithmetic

Objectives:

• Visualize matrices geometrically in Rn

• Define operations on matrices in ways consistent with geometric intuition

We are now ready to define a matrix:

Definition 1.3.1. A matrix is an m × n array of real numbers. If the matrix is a 1 × n
matrix, we say it is a row vector. If the matrix is an m× 1 matrix, we say it is a column
vector.

The vector language here is very intentional: while matrices are best introduced as algebraic
objects, they are best understood as geometric objects.

Vectors: A Brief Review Recall that a vector v =


v1
v2
...
vn

 is a list

of numbers of length n. (Note that we refer to vectors, without any modifier, as if they
are column vectors - for reasons we will describe shortly.) The dot product of two vectors

v =


v1
v2
...
vn

 and w =


w1

w2
...
wn

 is given by multiplying corresponding entries and adding the

resulting products: v ·w = v1w1 + v2w2 + · · ·+ vnwn.
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Here are the vectors v =

[
2
1

]
and w =

[
−1
2

]
:

x1

x2

v

w

Note that these two vectors make a right angle with each other. This turns out to coincide
directly with the fact that the dot product of v and w equals zero: v ·w = 2(−1)+1(2) = 0.

How do matrices work with vectors? The answer can be found in the systems of equations
we’ve been working with in the previous sections.

Example 1.3.1. Write the system of equations

0x1 − x2 = −1

x1 − 0x2 = 2

as a matrix equation of the form Ax = b.

Notice that in this case, the vector b is equal to the vector w given above. Generally the
vector x is unknown - it’s something we have to solve for. Gratefully, thanks to what we’ve
learned in our previous sections, we can solve for x:

We have learned what the matrix A does to the vector v now: it rotates the vector counter-
clockwise by 90 degrees.
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So the matrix A does something to vectors! We can now make an even better definition:

Definition 1.3.2. A matrix A is a type of function that maps vectors to vectors. The
matrix product Ax, for an appropriately-sized vector x, is given by

a11 a12 · · · a1n
a21 a22 · · · a2n
...

...
. . .

...
am1 am2 · · · amn



x1

x2
...
xn

 =


a11x1 + a12x2 + · · ·+ a1nxn

a21x1 + a22x2 + · · ·+ a2nxn
...

am1x1 + am2x2 + · · ·+ amnxn

 .

The matrix equation Ax = b, then, corresponds to the following equality of matrices:
a11x1 + a12x2 + · · ·+ a1nxn

a21x1 + a22x2 + · · ·+ a2nxn
...

am1x1 + am2x2 + · · ·+ amnxn

 =


b1
b2
...
bn

 .

This is the exact system of equations we gave at the beginning of Section 1.1.

Example 1.3.2. Let A be an m × n matrix and say that we wish to analyze the matrix
equation Ax = b. What must the size of x be? What must the size of b be?

Matrix Arithmetic Now that the matrix has been defined as a function, we
can ask a few questions we normally ask of functions. Can we add two matrices? Can we
multiply a matrix by a constant? Can we compose two matrices? We want our definitions
here to line up with how adding functions work. That is, for functions f, g and matrices
A,B:

(f + g)(x) = f(x) + g(x) ⇐⇒ (A+B)x = Ax+Bx

(cf)(x) = cf(x) ⇐⇒ (cA)x = cAx

(f ◦ g)(x) = f(g(x)) ⇐⇒ (AB)x = A(Bx)

Matrix Addition and Scalar Multiplication

Given two m× n matrices A,B and a scalar c, we define:

(i) A+B =

 a11 + b11 · · · a1n + b1n
...

. . .
...

am1 + bm1 · · · amn + bmn



(ii) cA =

 ca11 · · · ca1n
...

. . .
...

cam1 · · · camn



NOTE: In order to add two matrices, the two
matricesmust be of the same size. Otherwise
the addition is undefined.

(iii) AT =


a11 a21 · · · am1

a12 a22 · · · am2
...

...
. . .

...
a1n a2n · · · amn
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Briefly, these definitions come about since they mirror exactly how we add and multiply by
scalars a pair of two vectors of the same size. One can think of a matrix A as if it were an
array of column vectors stacked side-by-side:

A =


· · ·

a1 a2 · · · an

· · ·


So we can see that A+B is formed by simply adding corresponding column vectors together,
and that cA is formed by simply scaling each column vector.

Example 1.3.3. Write the system of equations

3x1 + 2x2 + x3 = 5

x1 − 2x2 + 5x3 = −2

2x1 + x2 − 3x3 = 1

as a matrix equation Ax = b. Then write Ax as a linear combination of column vectors.

To be formal, we give the definition of linear combination:

Definition 1.3.3. If a1, . . . , an are vectors in Rm and c1, . . . , cn are scalars, than a vector v
is equal to a linear combination of the vectors a1, . . . , an if

v = c1a1 + c2a2 + · · ·+ cnan.

This leads us to our first theorem of this course:

Theorem 1.1. A linear system Ax = b is consistent if and only if b can be written as a
linear combination of the column vectors of A.
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Section 1.4

Matrix Algebra

Objectives:

• Learn matrix multiplication and the properties of matrix arithmetic

• Recognize the identity matrix and check whether two matrices are inverse to each other

Matrix Multiplication We have not yet discussed how to compose two
matrix functions. This process can seem strange until we see it in action:

Example 1.4.1. Let A =

[
a11 a12
a21 a22

]
and B =

[
b11 b12
b21 b22

]
. Find ABx, where x =

[
x1

x2

]
.

In short, if the product AB is defined, then the (i, j)th entry of AB is equal to

(AB)ij = ai1b1j + ai2b2j + · · ·+ ainbnj.
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Example 1.4.2. Say that the product AB is defined. What must be true about the sizes of
A and B? What is the resulting size of AB? Must BA also be defined?

Example 1.4.3. Show that, for matrices

A =

[
1 2
3 4

]
and B =

[
5 6
7 8

]
,

the matrix products AB and BA both exist but are unequal.

The typical commutative property of multiplication that we would expect, therefore, does
not apply to matrices. However, lots of other rules do apply and can be taken for granted:
for matrices A,B,C of the appropriate sizes and scalars α, β,

1. A+B = B + A

2. (A+B)+C = A+(B+C)

3. (AB)C = A(BC)

4. A(B+C) = AB+AC

5. (A+B)C = AC+BC

6. (αβ)A = α(βA)

7. α(AB) = (αA)B = A(αB)

8. (α + β)A = αA+ βA

9. α(A+B) = αA+ αB.
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Identity and Inverses

Example 1.4.4. Can we come up with a matrix O that acts like the number 0 for matrices?
That is, A+O = O+A = A, and AO = OA = O? (Note that for this last equation to hold,
O must be an n× n matrix.)

Example 1.4.5. Can we come up with a matrix I that acts like the number 1 for matrices?
That is, AI = IA = A? (Note that for this last equation to hold, I =: In must be an n× n
matrix.)
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The reason we bring up the identity matrix In for n× n matrices is this. We have defined
addition, subtraction (since A−B = A+(−B)), and multiplication of matrices, but we have
not yet defined matrix division. Recall that for non-zero numbers a we define 1

a
, or a−1, to

be the number such that

a
1

a
=

1

a
a = 1.

So given an n× n matrix A, we would like to see if there is a matrix A−1 such that

AA−1 = A−1A = I.

We say such a matrix A is invertible or nonsingular. An n× n matrix A is singular if it
does not have a multiplicative inverse.

Example 1.4.6. Show that

[
2 4
3 1

]
and

[
− 1

10
2
5

3
10

−1
5

]
are inverses of each other.
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Example 1.4.7. Show that

[
1 0
0 0

]
is singular.

The above example shows us that some non-zero matrices can still be singular. The process
of finding the inverse of a matrix is very similar to the Gauss-Jordan elimination technique
we saw earlier: we can solve for each entry of the inverse matrix by reducing the augmented
matrix

[
A|In

]
so that the left-hand side is in reduced row echelon form. If the augmented

matrix now reads
[
In|B

]
for some matrix B, then A is invertible and B = A−1.

Example 1.4.8. Use Gauss-Jordan reduction to find

[
2 4
3 1

]−1

.

24



©2025 John Weeks

Example 1.4.9. Use the properties of inverses to show that (AB)−1 = B−1A−1.

We close with a few properties of transpose matrices that we may take for granted:

1. (AT )T = A

2. (αA)T = αAT

3. (A+B)T = AT +BT

4. (AB)T = BTAT
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Section 1.5

Elementary Matrices

E1 =

0 1 0
1 0 0
0 0 1

, E2 =

2 0 0
0 1 0
0 0 1

, E3 =

 1 0 0
0 1 0
−4 0 1


Objectives:

• Recognize elementary matrices and use them to determine invertibility of a matrix

• Use elementary matrices to calculate the LU factorization of a matrix

Now that we have learned matrix multiplication, we can write each of our row operations
(I)-(III) from Section 1.1 as matrix transformations. Let’s do one together.

Example 1.5.1. Write the row operation (II) as a matrix transformation. Say we have a
3 × 3 matrix A and that we multiply the first row by some non-zero scalar α to get a new
matrix B. Find the matrix E such that EA = B.

Example 1.5.2. Show that applying the matrix transformation

0 1 0
1 0 0
0 0 1

 to the matrix

A =

a b c
d e f
g h i

 switches the first two rows of A.
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Example 1.5.3. Verify that

 1 0 0
0 1 0
−4 0 1

a b c
d e f
g h i

 is equal to

 a b c
d e f

g − 4a h− 4b i− 4c

.

Each of the matrices E1, E2, and E3 given in our examples above are elementary matrices.

Definition 1.5.1. An elementary matrix is a matrix that is obtained by performing a
single elementary operation (I)-(III) on an identity matrix.

Example 1.5.4. Show that E1, E2, and E3 are all invertible.

We have proven the following theorem:

Theorem 1.2. All elementary matrices are invertible, and the inverse of an elementary
matrix is also an elementary matrix.

Recall in Section 1.1 that we said that a system of equations was equivalent to another if
they have the same solution set. This is the same notion as being able to get from one system
to another by applying a sequence of row operations. This inspires the following definition
for matrices:

Definition 1.5.2. A matrix B is row equivalent to a matrix A if there exists a finite
sequence E1, E2, . . . , Ek of elementary matrices such that

B = EkEk−1 · · ·E1A.
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Example 1.5.5. Prove the following theorem: if A is an n× n matrix, the following state-
ments are the same:

This leads us to the following result: the system Ax = b of n linear equations in n unknowns
has a unique solution if and only if A is nonsingular, in which case x = A−1b.

Example 1.5.6. Solve the system

2x1 + 4x2 = 10

3x1 + x2 = −20.
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Example 1.5.7. Let A =

2 4 2
1 5 2
4 −1 9

. Using only row operation (III), find a matrix U in

row echelon form that is equivalent to A. Then write A = LU , where L is the product of
elementary matrices of row operation (III).

This is called a decomposition of matrices, where a matrix A is written as a product of
less-complicated matrices. The matrix L is said to be lower triangular, since all entries
above the main diagonal are zero. The matrix U is said to be upper triangular, since all
entries below the main diagonal are zero. This decomposition where all diagonal entries of
the matrix L are 1’s is called the LU factorization of the matrix A. For large matrices, it
is less computationally expensive (i.e., takes less time) to first factorize the matrix into its
LU decomposition before analyzing its data further.
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Section 2.1

Determinants

Objectives:

• Calculate the determinant of n× n matrices

In the previous section, we found some equivalent ways to state that a matrix A is invertible.
We will be able to add one more statement to that theorem in Example 1.5.5 in this chapter:
a matrix A is invertible iff det(A) ̸= 0.

A determinant of order 2 is defined to be∣∣∣∣ a b
c d

∣∣∣∣ = ad− bc.

A determinant of order 3 can be defined in terms of order 2 determinants:∣∣∣∣∣∣
a1 a2 a3
b1 b2 b3
c1 c2 c3

∣∣∣∣∣∣ = a1

∣∣∣∣ b2 b3
c2 c3

∣∣∣∣− a2

∣∣∣∣ b1 b3
c1 c3

∣∣∣∣+ a3

∣∣∣∣ b2 b3
c2 c3

∣∣∣∣ .
This is only one of the ways to define this determinant. While our scalar values here come
from the first row, we will show how we can proceed similarly down any row or column of
this matrix in Example 2.1.2.
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Example 2.1.1. Find the determinant of the matrix A =

2 5 4
3 1 2
5 4 6

.

Example 2.1.2. Find the determinant of the matrix A =

2 0 4
3 0 2
5 0 6

.

Example 2.1.3. Show that a 2×2 matrix A is row equivalent to I if and only if det(A) ̸= 0.
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We continue defining the determinant of a matrix recursively, just as we did going from
order 2 to order 3. For an order 4 matrix, pick any column or row of the matrix. Then
for each entry in that column or row, multiply that entry times the determinant of order 3
formed by deleting the entire row and column that entry is in. The signs of each term will
be determined by the matrix of signs:

+ − + −
− + − +
+ − + −
− + − +

 ,

where the matrix is formed by starting with a + in the top-left corner, then alternating signs
for every row and column traversed. The sum of these terms is the determinant of the
larger matrix. We can do a similar process to find the determinant of larger matrices.

Example 2.1.4. Write the determinant of A =


1 5 3 −7 3
6 0 −9 2 4
6 0 1 −2 −4
9 1 8 −9 3
1 0 −8 5 5

 as a linear combina-

tion of determinants of order 4.

We won’t discuss this further in this course, but one other definition for the determinant

is the following: given a matrix A =

[
a b
c d

]
, form the column vectors

[
a
c

]
and

[
b
d

]
of the

matrix. Then | det(A)| is equal to the area of the parallelogram formed by these column

vectors starting at the origin in R2. If the angle from

[
a
c

]
to

[
b
d

]
is less than 180 degrees,

the determinant is positive; otherwise the determinant is negative. A similar definition can
be made in larger dimensions.
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Section 2.2

Determinant Properties

Objectives:

• Determine how row operations affect the determinant of a matrix

• Establish that determinants are linked to invertibility of a matrix

Example 2.2.1. Let A =

[
a b
c d

]
. Then suppose E1 =

[
0 1
1 0

]
is the elementary matrix

associated to row operation (I) where we switch the two rows of this matrix. Find det(E1A).
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Example 2.2.2. Let A =

a b c
d e f
g h i

 be a general 3 × 3 matrix, and let E2 =

α 0 0
0 1 0
0 0 1


be the elementary matrix associated to multiplying the first row of this matrix by a nonzero
scalar α. Find det(E2A).

Example 2.2.3. Let A =

a b c
d e f
g h i

 be a general 3 × 3 matrix. Then consider E3 =1 0 0
0 1 0
α 0 1

 to be the elementary matrix associated to adding α times the first row to the

third row of the original matrix. Find det(E3A).
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When combining our discoveries above with the fact that, for elementary matrices E,

det(E) =


−1 if E is of type I

α ̸= 0 if E is of type II

1 if E is of type III

.

we find the following:

Theorem 2.1. If E is an elementary matrix, then

det(EA) = det(E) det(A).

In particular,

(I) interchanging two rows of a matrix changes the sign of the determinant.

(II) multiplying a single row of a matrix by a scalar has the effect of multiplying the value
of the determinant by that scalar.

(III) adding a multiple of one row to another does not change the value of the determinant.

Since det(AE) = det((AE)T ) = det(ETAT ), we can repeat statements (I) through (III)
about switching columns of the matrix A, since these are the rows of the matrix AT .

Example 2.2.4. Let A =

1 2 3
1 2 3
8 −1 2

. Find det(A) using row reduction and elementary

matrices.
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We now arrive at the promised result:

Theorem 2.2. An n× n matrix A is singular if and only if det(A) = 0.

Proof. Write A in its row-echelon form U , so that

U = EkEk−1 · · ·E1A

for some elementary matrices Ei for i ∈ [k]. What must be true if A is singular?

What must be true if A is nonsingular?

In a similar way to how we showed that det(EA) = det(E) det(A) whenever E is an ele-
mentary matrix, we can show that det(BA) = det(B) det(A) for arbitrary matrices B and
A.
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Example 2.2.5. Recall that a 3× 3 matrix A might have an LU factorization of the form 1 0 0
ℓ21 1 0
ℓ31 ℓ32 1

u11 u12 u13

0 u22 u23

0 0 u33

 .

Here the values of ℓij and uij (for i, j appropriately defined) are arbitrary real numbers.
Calculate the determinant of LU , using the values given above.
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Section 2.3

Uses of Determinants

Objectives:

• Utilize Cramer’s Rule to calculate solutions to systems of equations

Our use of determinants has an application in what is known as Cramer’s Rule.

Theorem 2.2. Let A be a nonsingular n × n matrix, and let b ∈ Rn. Let Ai be a matrix
obtained by replacing the ith column of A by b. If x is the unique solution of Ax = b, then
the ith component of the solution x, xi, is equal to

xi =
det(Ai)

det(A)
.

Proof. We will only show this for an arbitrary 2× 2 matrix A =

[
a b
c d

]
. First note that, by

Question 1 on our Homework 3,

x = A−1b =
1

det(A)

[
d −b
−c a

] [
b1
b2

]
.

Hence by multiplying out the top row of this matrix by b, we get

x1 =
b1 · d− b2 · b

det(A)
=

det

([
b1 b
b2 d

])
det(A)

=
det(A1)

det(A)
.

Also

x2 =
−b1 · c+ b2 · a

det(A)
=

det

([
a b1
c b2

])
det(A)

=
det(A2)

det(A)
.
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Example 2.3.1. Use Cramer’s Rule to solve

x1 + 2x2 + x3 = 5

2x1 + 2x2 + x3 = 6

x1 + 2x2 + 3x3 = 9

Example 2.3.2. Why does Cramer’s Rule only work for nonsingular matrices?
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Section 3.1

Vector Spaces

Objectives:

• Identify vector spaces and non-vector spaces

• Explore functional vector spaces and their applications

Motivation: Pn In Section 0.1 we saw that one application of linear algebra
does not have to do with vectors in Rn at all. Instead, we replace our object of study with
functions rather than coordinates. The properties we saw with matrices back in Chapters
1 and 2 still carry over into the world of functions, in a manner that we will be discussing
more in Chapter 4: matrices are linear transformations over their respective vector space.

To see how we might be able to connect these two, let’s start by defining the space Pn:

Definition 3.1.1. Given a natural number n ∈ {1, 2, 3, . . . }, we define Pn to be the set of
all polynomials

an−1x
n−1 + an−2x

n−2 + · · ·+ a1x
1 + a0

of degree less than n. Here the values of ai (for i ∈ [n− 1] ∪ {0}) are real numbers.

Note that, for example, xn−1 + xn−2 + · · · + x2 + x + 2 is in Pn by this definition, but it is
not in Pn−1 since its degree of n − 1 is not less than n − 1. The polynomial x2 is in Pn as
long as n ≥ 3, but 1

x
is not in Pn for any n. The coordinate corresponding to a polynomial

p ∈ Pn is given by

Pn ∋ a0 + a1x
1 + · · ·+ an−2x

n−2 + an−1x
n−1 ↔


a0
a1
...

an−2

an−1

 ∈ Rn.

Note that this mapping uniquely defines a point in Rn for every polynomial p ∈ Pn. What’s
more, every point in Rn can uniquely yield a polynomial in Pn just by putting the numbers
back as coefficients of the original polynomial. This starts helping Pn look a lot like Rn.
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We can even go farther: how do we add two polynomials in Pn? The way we are used to
adding polynomials is combining like terms, like so:

a0 + a1x+ · · ·+ an−2x
n−2 + an−1x

n−1

+ b0 + b1x+ · · ·+ bn−2x
n−2 + bn−1x

n−1

(a0 + b0) + (a1 + b1)x+ · · ·+ (an−2 + bn−2)x
n−2 + (an−1 + bn−1)x

n−1

This looks a lot like how we would add two vectors in Rn:
a0
a1
...

an−2

an−1

+


b0
b1
...

bn−2

bn−1

 =


a0 + b0
a1 + b1

...
an−2 + bn−2

an−1 + bn−1

 .

Comparing the summed polynomial and the summed vector once again,

(a0 + b0) + (a1 + b1)x+ · · ·+ (an−2 + bn−2)x
n−2 + (an−1 + bn−1)x

n−1 ↔


a0 + b0
a1 + b1

...
an−2 + bn−2

an−1 + bn−1

 ,

we see that this is exactly the same correspondence we started out with!

We can see how multiplying a polynomial by a scalar multiple does the same thing as
multiplying an Rn vector by this same scalar under this correspondence. Any two spaces
which are identical under a correspondence and which add and scalar multiply the same way
are said to be vector space isomorphic to each other - they are functionally the same
space.

We will call both these coordinates and these functions vectors in this chapter. This means
that a vector is more than just a coordinate; it could also denote a function or an abstract
object in what is known as a vector space. This notion of vector space carries with it
all three things we saw above: the collection of objects (vectors), the addition operation
(between vectors), and the multiplication operation (with a scalar). These three things
together define a vector space.
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Vector Space Definition

Definition 3.1.2. We will define a vector space (V,+, ·) to be three things altogether: a
collection of objects V , an addition operation between vectors + (which looks like x + y),
and a multiplication operation between a scalar and a vector · (which looks like α ·x, or αx).
We ask for the following axioms to be satisfied:

A1. For any x,y ∈ V , x+ y ∈ V , and

x+ y = y + x.

A2. For any x,y, z ∈ V ,
(x+ y) + z = x+ (y + z).

A3. There is a number 0 ∈ V so that, for all x ∈ V ,

x+ 0 = 0+ x = x.

A4. For any vector x ∈ V there is a vector denoted by −x with the property that

x+ (−x) = 0.

A5. For any α ∈ R, x,y ∈ V , αx and αy are in V , and

α(x+ y) = αx+ αy.

A6. For any α, β ∈ R, x ∈ V ,
(α + β)x = αx+ βx.

A7. For any α, β ∈ R, x ∈ V ,
(αβ)x = α(βx).

A8. For any x ∈ V ,
1x = x.

All of these axioms are quite sensible. However, very few combinations of V , +, and · satisfy
them. If one of these axioms fails, the combination (V,+, ·) cannot be a vector space. Let
us see some non-examples.
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Example 3.1.1. Define V = {(a, 1) : a ∈ R} to be the line in R2 where the second coordinate
is always 1. (This is the line y = 1.) With standard addition + and multiplication ·, find all
axioms that show (V,+, ·) is not a vector space.

Example 3.1.2. Let V = Rn and let + be the standard addition. However, define ⊙ to be
a multiplication between a scalar r and a vector x such that

r ⊙ x = 0

rather than the typical multiplication. Find all axioms that show that (V,+,⊙) is not a
vector space.
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We now continue to one of our most common examples of a vector space: the functional
vector space.

Example 3.1.3. Let a < b be real numbers, and define C[a, b] to be the space of all contin-
uous functions defined on the closed interval [a, b]. Let + denote standard function addition
and let · denote standard scalar multiplication of functions. Show that (C[a, b],+, ·) is a
vector space.

Remember, if something fails one of the axioms, it is not a vector space!

We close with a few properties that all vector spaces share which we can take for granted.
(Can you use the axioms to prove these?)

Theorem 3.1. If V is a vector space and x is any element of V , then

(i) 0x = 0.

(ii) if x+ y = 0, then y = −x as defined in A3.

(iii) (−1)x = −x as defined in A3.
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Section 3.2

Subspaces

Objectives:

• Identify subspaces of vector spaces

• Discover nullspaces and spans of collections of vectors as subspaces

• Define spans of vectors and spanning sets of vector spaces

Example 3.2.1. Let’s revisit Example 3.1.1. This time, let’s define S = {(a, 0) : a ∈ R} to
be the line in R2 where the second coordinate is always 0. (This is the line y = 0.) With
standard addition + and multiplication ·, show that (S,+, ·) is a vector space.

The axioms that didn’t hold last time now hold easily since our vector space S, which is a
line, now also contains the origin. In fact, many of the axioms we checked hold automatically
since S belongs to V = R2, which is already a vector space. We define a subspace to be
a subset S of a larger space V which is by itself a vector space when equipped with the
addition and multiplication of V . So for example, the line y = 0 is a subspace of the vector
space (R2,+, ·).
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If we take out the axioms that automatically hold, we are left three small axioms to test,
given below:

Subspace Test

Let (V,+, ·) be a vector space. For a given subset S ⊂ V , S is a subspace of V if and only
if all of the following are true:

(i) 0 ∈ S.

(ii) αx ∈ S whenever x ∈ S and for any scalar α

(iii) x+ y ∈ S whenever x,y ∈ S.

That is, if S is a nonempty set closed under vector addition and scalar multiplication, then
S is a subspace of V .

NOTE: A subset S ⊂ V only needs to fail one of these properties in order to not be a
subspace.

Example 3.2.2. Let S = {(x1, x2, x3)
T : x1 = x2}. Is S a subspace? Prove or disprove your

answer.

Define the space of n-times differentiable functions Cn[a, b] to be the space of continuous
functions on [a, b] whose nth derivatives are defined and also continuous.

Example 3.2.3. Show that |x| is in C[a, b] but not in C1[a, b]. Then show that x|x| is in

C1[a, b] but not in C2[a, b]. (Hint: d
dx
|x| = sgn(x) =

{
1 if x ≥ 0

−1 if x < 0
.)
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The space Cn[a, b] is non-empty since the zero function is infinitely differentiable. Since the
sum and scalar multiplication of n-times differentiable functions is also n-times differentiable,
Cn[a, b] is a subspace of C[a, b] by the Subspace Test.

Example 3.2.4. Let S be the set of all f in C2[a, b] such that

f ′′(x) + f(x) = 0.

Show that S is a subspace of C2[a, b].

Example 3.2.5. Let A be an arbitrary m×n matrix, and define the space N(A) given below
to be the nullspace of A:

N(A) = {x ∈ Rn : Ax = 0}.

Show that N(A) is a subspace of Rn.
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Example 3.2.6. Determine N(A) if

A =

[
1 1 1 0
2 1 0 1

]
.

To describe the nullspace in the above example, we could have also said

N(A) = span




1
−2
1
0

 ,


−1
1
0
1


 .

We say that the span of this collection of vectors, span{v1, . . . ,vn}, is the set of all linear
combinations of the vectors v1, . . . ,vk. That is,

span{v1, . . . ,vk} = {α1v1 + α2v2 + · · ·+ αkvk : αi ∈ R, i ∈ [k]}.

Example 3.2.7. Find the span of the vector

[
1
1

]
in R2.
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Example 3.2.8. Let {v1, . . . ,vk} be an arbitrary collection of vectors in Rm. Show that
span{v1, . . . ,vk} is a subspace of Rm.

Example 3.2.9. For the vector space R2, we define e1 =

[
1
0

]
and e2 =

[
0
1

]
to be the

standard basis vectors for R2. Show that {e1, e2} form a spanning set for R2 - that is,
show that span{e1, e2} = R2.
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Example 3.2.10. Can a single vector form a spanning set for R2? If so, give it.

Example 3.2.11. Is


12
4

 ,

21
3

 ,

 4
−1
1

 a spanning set for R3?
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Example 3.2.12. Is {1− x2, x+ 2, x2} a spanning set for P3?

We close with a few facts to help us remember the nullspace of an m× n matrix A.

• the nullspace N(A) is the collection of vectors x such that Ax = 0. Hence the vectors
x are always in Rn (that is, their size is determined by the number of columns of A -
otherwise Ax would be undefined)

• if x1 and x2 both solve the equation Ax = b, then

A(x1 − x2) = Ax1 − Ax2 = b− b = 0,

so x1 − x2 ∈ N(A).

• conversely, if z ∈ N(A) and x is such that Ax = b, then

A(x+ z) = Ax+ Az = b+ 0 = b.

These last two facts yield the following theorem:

Theorem 3.2. If the linear system Ax = b has a solution x0, then y is also a solution if
and only if y = x0 + z for some vector z ∈ N(A).

We call the vector x0 the particular solution of Ax = b and consider N(A) to be the set of
general solutions. This comes up in the study of linear differential equations.
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Section 3.3

Linear Independence

Objectives:

• Discuss relationships of linearly independent vectors

• Relate linear independence of column vectors to invertibility of matrices

• Discover the Wronskian as a way to find linearly independent functions

Example 3.3.1. Let e1 =

10
0

, e2 =
01
0

, and e3 =

00
1

 be the standard basis vectors

for R3. Determine whether

e1, e2, e3,

11
0

 forms a spanning set for R3.

While the set above certainly does form a spanning set, it seems a little larger than it needs

to be. The vectors e1, e2, e3 seem to be able to do all the work - what is the need for

11
0

?
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Perhaps we are missing something - is there a vector in R3 that we need

11
0

 for?

Example 3.3.2. Show that

11
0

 is a linear combination of e1, e2, e3. Then say R3 ∋ v =

α1e1 + α2e2 + α3e3 + β

11
0

. Show that we could write v as a linear combination of only

e1, e2, e3.

This motivates the following definition:

Definition 3.3.1. We say that the vectors v1, . . . ,vn in a vector space V are linearly
dependent if one vector can be written as a linear combination of the others. More formally,
there exist scalars c1, c2, . . . , cn, not all zero, such that

c1v1 + c2v2 + · · ·+ cnvn = 0.

Example 3.3.3. Show that {0} is linearly dependent.

Example 3.3.4. Show the set from Example 3.3.1 is linearly dependent.
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Example 3.3.5. Show that the set {e1, e2} is linearly independent in R3 - that is, show
that if c1e1 + c2e2 = 0, then both c1 and c2 must be zero.

While the example above is “small enough” to be linearly independent, it is now too small

to be a spanning set - there is no way the span of these two vectors e1 and e2 can reach

00
1

.
So {e1, e2, e3} is a minimal spanning set of R3, which we call a basis of R3.

Example 3.3.6. Show that

{[
1
1

]
,

[
1
2

]}
is a basis for R2.

In a geometric sense of R2 or R3, one can look at the figure at the beginning of this section
for some intuition. Note that in the left graphic, w is linearly dependent on u and v since
it is contained within the same plane that contains u and v. In the right graphic, w can no
longer be written as a linear combination of u and v since it is in a different plane, so it is
linearly independent.
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Note that, once these vectors above are made column vectors of a matrix, linear independence
is equivalent to saying that

Ax = x1a1 + x2a2 + x3a3 = 0

has only the trivial solution. We have previously proven that this is equivalent to the
determinant of A being nonzero. So the above example helps us see an easy trick to proving
linear independence. We summarize our results here:

Theorem 3.2. Let a1,a2, . . . ,an be n vectors in Rn and let A =
[
a1 · · · an

]
. Then

vectors a1,a2, . . . ,an are linearly dependent if and only if A is singular.

Example 3.3.7. Determine whether the vectors

42
3

,
23
1

, and
 2
−5
3

 are linearly indepen-

dent.

Example 3.3.8. Determine whether the vectors p1(x) = x2 − 2x + 3, p2(x) = 2x2 + x + 8,
and p3(x) = x2 + 8x+ 7 are linearly independent in P3.
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From this last example we have learned that, given n equations and n unknowns (or equiv-
alently an n × n matrix), the matrix of coefficeints is invertible if and only if the column
vectors span and are linearly independent. We formalize this in a theorem:

Theorem 3.3. Let A be an n× n matrix. Then A is an invertible matrix if and only if its
columns form a basis of Rn.

We end this section with a discussion of linear independence in the set C(n−1)[a, b]. We begin
by assuming we have n functions f1, . . . , fn that are linearly dependent. That is,

c1f1(x) + c2f2(x) + · · ·+ cnfn(x) = 0

for all x ∈ [a, b] and for constants c1, . . . , cn, not all zero. Taking derivatives of both sides
we get the equation

c1f
′
1(x) + c2f

′
2(x) + · · ·+ cnf

′
n(x) = 0.

If we continue taking derivatives of both sides as long as we are able to, we get the system

c1f1(x) + c2f2(x) + · · ·+ cnfn(x) = 0

c1f
′
1(x) + c2f

′
2(x) + · · ·+ cnf

′
n(x) = 0

... =
...

c1f
(n−1)
1 (x) + c2f

(n−1)
2 (x) + · · ·+ cnf

(n−1)
n (x) = 0.

For each fixed x, then, we get the matrix equation
f1(x) f2(x) · · · fn(x)
f ′
1(x) f ′

2(x) · · · f ′
n(x)

...
...

. . .
...

f
(n−1)
1 (x) f

(n−1)
2 (x) · · · f

(n−1)
n (x)



α1

α2
...
αn

 =


0
0
...
0

 .

From just our beginning assumption, we have that the nontrivial solution (c1, c2, . . . , cn)
T

solves this system. We say that the determinant of the matrix on the left is called the
Wronskian of f1, . . . , fn.

In the case that this nontrivial solution exists, the determinant of this matrix (or the Wron-
skian) is equal to 0. If there is no nontrivial solution for some x, however, then this means
our functions f1, . . . , fn are linearly independent. This gives us the following theorem:

Theorem 3.4. Let f1, f2, . . . , fn be elements of C(n−1)[a, b]. If there exists a point x0 in [a, b]
such that W [f1, f2, . . . , fn](x0) ̸= 0, then f1, f2, . . . , fn are linearly independent.
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NOTE: functions that are differentiable more than n− 1 times are still in the vector space
C(n−1)[a, b]. For example, ex ∈ C(n−1) for all values n ≥ 2.

Example 3.3.9. Show that ex and e−x are linearly independent in C(−∞,∞).

Example 3.3.10. Show that the vectors 1, x, x2, x3 are linearly independent in C(−∞,∞).
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Section 3.4

Basis and Dimension

Objectives:

• Compute various bases for vector spaces

• Discover theorems relating all bases of a vector space together

Example 3.4.1. Use your work in Example 3.2.6 to find a basis for the nullspace of A.
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We reiterate a discovery from the previous section:

Definition 3.4.1. The vectors v1,v2, . . . ,vn form a basis for a vector space V if and only
if the following are true:

(i) v1, . . . ,vn are linearly independent; and

(ii) v1, . . . ,vn span Rn.

We show that all bases are connected: they all have the same size.

Theorem 3.3. If {v1, v2, . . . , vn} is a basis for a vector space V , then ANY collection of m
vectors in V , where m > n, is linearly dependent.

Proof. Let u1, . . . ,um be m vectors in V , where m > n. Then since these are in V and
{v1, . . . ,vn is a spanning set for V , we have the equations

ui = ai1v1 + ai2v2 + · · ·+ ainvn for i ∈ [m].

Now consider a linear combination c1u1 + c2u2 + · · · + cmum. If we show that there
exist c1, . . . , cm, not all zero, such that this combination equals zero, then by definition
{u1, . . . ,um} are linearly dependent and we are done. We just mentioned that each of the
vector u1, . . . ,um can be written as a linear combination of the vi using the coefficients aij
above. Plugging these into this linear combination, we get that

c1u1 + · · ·+ cmum =

(
m∑
i=1

ai1ci

)
v1 + · · ·+

(
m∑
i=1

ainci

)
vn.

Now {v1, . . . ,vn} is linearly independent, so if this equals 0 each of these sums are equal
to 0. But this yields n equations of the form

∑m
i=1 aijci = 0 - one for each vi - with m

unknowns, c1 through cm. Since m > n, this is an underdetermined homogeneous system
and hence has a nontrivial solution ĉ1, . . . , ĉm, which gives us our nontrivial solution to the
original linear combination

ĉ1u1 + · · ·+ ĉmum = 0.

So these vectors are linearly dependent, and we are done.

From this immediately follows the following theorem:

Theorem 3.4. All bases for a vector space V have the same size - this is called the dimen-
sion of V .

Proof. We have just shown any collection bigger than a basis is linearly dependent and hence
cannot be a basis. Hence if we have two bases, one cannot be bigger than the other, so they
must be the same size.
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Example 3.4.2. Show that the functions 1, x, x2, . . . , xn−1 are all linearly independent in P ,
the space of all polynomials. Conclude that P is infinite dimensional, meaning that no
finite set of vectors can span P .

The following theorems give us shortcuts to determining when we have a basis for any
finite-dimensional vector space (which we will be dealing with most of the time).

Theorem 3.5. If a vector space V has dimension n, then

(i) any set of n linearly independent vectors for V is a basis for V .

(ii) any n vectors that span V form a basis for V .

(iii) no fewer than n vectors can span V , but you can extend the set to form a basis for V
by adding more vectors.

(iv) any spanning set of more than n vectors cannot be a basis for V , but it can be pared
down by removing vectors to form a basis for V .
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Example 3.4.3. The vectors x1 =

12
2

, x2 =

25
4

, x3 =

13
2

, x4 =

27
4

, x5 =

11
0

 span

R3. Pare down the set {x1, . . . ,x5} to form a basis for R3.
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Section 3.5

Change of Basis

Objectives:

• Determine how to write vectors as linear combinations of different bases

• Define the transition matrix of a change of basis and use it to find new coordinates

The standard coordinates of a vector in R2 are written as a linear combination of e1 and
e2. For example, the vector (7, 4) can also be written as 7e1 + 4e2. Visually, this set of
coordinates can be seen as the addition of several vectors end-to-end:

x

y
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Given another basis u1,u2 of R2, we can similar write a vector in terms of these coordinates.
The vector (7, 4) is an element of R2, so it can be written as[

7
4

]
= c1u1 + c2u2,

and we say that the coordinates of

[
7
4

]
with respect to the basis {u1,u2} is (c1, c2){u1,u2}.

(If we ask for coordinates of a vector without specifying a basis, we mean the standard
coordinates.)

Example 3.5.1. The vectors u1 = (3, 1) and u2 = (2, 1) form a basis for R2. Find the
coordinates of the vector v = (7, 4) with respect to the basis u1, u2.

As an assistive visual, here are those vectors seated end-to-end ending at (7, 4):

x

y
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Example 3.5.2. Say that (7, 4)u1,u2 are the coordinates for a vector written with respect to
the basis {u1,u2}, where these vectors are the same as they were in the previous example.
Find the coordinates of this vector with respect to the standard basis.

The matrix U whose columns are the basis vectors {u1, . . . ,un} written in terms of the
standard coordinates {e1, . . . , en}, is called the transition matrix from {u1, . . . ,un} to
{e1, . . . , en}. This has two good uses:

(I) if we would like the coordinates of a vector x = (x1, x2)
T in terms of a basis {u1,u2},

we calculate v{u1,u2} = U−1x.

(II) if we are given the coordinates of a vector v{u1,u2}, we can write this vector in the
standard basis by calculating x = Uv.

Example 3.5.3. Let u1 = (3, 2)T , u2 = (1, 1)T , and x = (7, 4)T . Find the coordinates of x
with respect to u1 and u2.

We can also find the transition matrix between two non-standard bases. This takes two
steps: first we transition one basis into the standard basis ({v1,vn} into {e1, e2}), then
transition the standard basis into the second basis ({e1, e2} into {u1,u2}).
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Example 3.5.4. Find the transition matrix corresponding to the change of basis from
{v1,v2} to {u1,u2}, where

v1 =

[
5
2

]
, v2 =

[
7
3

]
, and u1 =

[
3
2

]
, u2 =

[
1
1

]
.

Example 3.5.5. Suppose that in P3 we want to change from the ordered basis [1, x, x2] to
the ordered basis [1, 2x, 4x2 − 2]. Find the transition matrix, then calculate the coordinates
for x2 with respect to this new basis.
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Section 3.6

Row Space and Column Space

Objectives:

• Define the column and row spaces of a matrix

• Connect row spaces and nullspaces with the rank-nullity theorem

Recall that the nullspace of an m × n matrix A is the set of all vectors x ∈ Rn such that
Ax = 0. This tells us how much of the domain of the matrix A gets sent to zero. A related
opposing set would be the range of the matrix A, which would tell us all of the vectors y
such that, for some vector x, Ax = y. This would be a subset of Rm (rather than Rn, since
Ax has entries equal to the number of rows of A) and is called the column space of A.
It turns out that the nullspace and the column space (or equivalent, the nullspace and the
row space) have sizes that are strictly related to each other - this will be the rank-nullity
theorem that we will discuss later in this section.

We make the following definitions:

Definition 3.6.1. If A is an m×n matrix, the subspace of R1×n spanned by the row vectors
of A is called the row space of A, row(A). The subspace of Rm spanned by the column
vectors of A is called the column space of A, col(A).

Note that the row space of A is the column space of AT , and vice versa.
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Example 3.6.1. Describe the row and column spaces of A =

[
1 0 0
0 1 0

]
.

Note that any of our elementary row operations on A only replace rows with linear combina-
tions of the rows. Hence the row space does not change under the elementary row operations.
We will use this to our advantage in this example.

Example 3.6.2. Define the rank of a matrix A to be the dimension of the row space of A.
Find the rank of

A =

1 −2 3
2 −5 1
1 −4 −7

 .

We will similarly define the nullity of a matrix A to be the dimension of the null space of
A. The matrix in Example 3.2.6 has a nullity of 2 - as we saw in Example 3.4.1, it has a
basis of 2 vectors. This leads us to the major theorem of this section:

Theorem 3.6 (Rank-Nullity Theorem). If A is an m × n matrix, then the rank of A plus
the nullity of A is equal to the number of columns of A. That is, rank(A) + nullity(A) = n.

Proof. Let U be the reduced row echelon form of A. The system Ax = 0 is the equivalent
to the system Ux = 0 by our first theorem from this section.

If A has rank r, then U will have r non-zero rows and hence r leading 1’s. Consequently the
system Ux = 0 will have n− r free variables.

The dimension of N(A) is equal to the dimension of the free variables, since these form the
general solutions. So nullity(A) = n−r. Since A has rank r, we have rank(A)+nullity(A) =
r + (n− r) = n as desired.
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Example 3.6.3. Let A =

1 2 −1 1
2 4 −3 0
1 2 1 5

. Find a basis for the row space of A and a basis

for N(A). Verify that the rank-nullity theorem applies for A.

Let’s look back at the matrix U formed in the proof for the rank-nullity theorem, which
was formed by writing A in reduced row-echelon form. Note that the dimension of the
column space of U is also equal to r, the rank of A, since we can just consider the columns
with leading 1’s to be a basis. However, column space is not preserved in general by row
equivalence. So this doesn’t necessarily say (yet) that dim col(A) + nullity(A) = n.

But let’s play a trick. Let’s delete the columns of U that don’t have leading 1’s. Call that
UL, for “matrix of leading 1’s”. Delete those same columns in A and call it AL. Well, UL

is still the row reduction of AL, so if ALx = 0 has a solution, then ULx = 0 has the same
solution.

Now that we’ve deleted all the free-variables, the columns of UL are linearly independent.
So the only solution to ULx = 0 is x = 0. Hence this is the only solution to ALx = 0. This
implies that the columns of AL are linearly independent.

So returning to the matrix A, which has more columns, we know that the dimension of the
column space of A is at least the dimension of the column space of AL (which is the same
dimension as UL, which is r). So the dimension of the column space is at least the rank of
A.
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On the other hand, we can repeat this argument for AT , where row space and column space
switch roles (see our comment right after our first definition). So we have the following:

r = rank(A) = dim col(AT )

≥ rank(AT )

= dim col(A).

This leaves the following theorem:

Theorem 3.7. If A is an m × n matrix, the dimension of the row space is equal to the
dimension of the column space of A.

Example 3.6.4. Let

A =


1 −2 1 1 2
−1 3 0 2 −2
0 1 1 3 4
1 2 5 13 5

 .

Find a basis for the column space of A. (Hint: first row reduce to a matrix U , then delete
the columns in both A and U corresponding to the free variables in U .)
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Section 4.1

Linear Transformations

Objectives:

• Define and see examples of linear transformations between vector spaces

• Calculate ranges and kernels of linear transformations

Recall that a vector space, as defined at the beginning of Chapter 3, is closed under vector
addition and scalar multiplication. There are plenty of functions on these vector spaces: for
example, the function f(x) = (x2, x3) is a function from R to R2 since it takes a real number
x and returns a coordinate (x2, x3) written in terms of the input x.

The function f(x) = (x2, x3), however, does not satisfy the linearity conditions we discussed
in Section 0.1. This is where we asked two questions. For x, y in the domain of f and a
scalar multiple r,

Is f(x+ y) = f(x) + f(y)? f(x+y) = ((x+y)2, (x+y)3) ̸= (x2+y2, x3+y3) = f(x)+f(y).

Is f(rx) = rf(x)? f(rx) = ((rx)2, (rx)3) ̸= (rx2, rx3) = rf(x).

This means that f is not a linear transformation from R to R2. Even if the function failed
one of these two conditions, the mapping f could not be linear. We formalize that definition
here:

Definition 4.1.1. A mapping L : V → W from a vector space V into a vector space W is
said to be a linear transformation if

L(αv1 + βv2) = αL(v1) + βL(v2)

for all v1,v2 in V and for all scalars α, β. If V = W , we may also say L is a linear operator
on V .
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Example 4.1.1. Show that L : R2 → R2 defined by L(x) = 3x is linear in two different
ways.

Example 4.1.2. For a vector x =

[
x1

x2

]
, show that the mapping L : R2 → R2 defined by

L(x) = x1e1 is linear.

Example 4.1.3. Let L : R2 → R2 be defined by L(x) =

[
1 0
0 −1

]
x. Show that L is a linear

operator.
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Example 4.1.4. Show that L : R2 → R1 defined by L(x) = x1+x2 is a linear transformation
(not an operator).

Example 4.1.5. Show that the mapping M : R2 → R1 defined by M(x) =
√
x2
1 + x2

2 is not
linear.

Example 4.1.6. Let I : C[a, b] → R1 defined by

L(f) =

∫ b

a

f(x) dx.

Show that I is linear.
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Example 4.1.7. Let D : C1[a, b] → C[a, b] be given by

D(f) = f ′.

Show that D is linear.

Given a linear transformation L : V → W , we can use the properties of linear transformations
to find where L(0V ) goes. (Here we are using 0V to denote the zero vector of V , It may be
different than the zero vector of W , 0W , but they share the same properties of zero vectors
in their respective spaces.) For example, we know from Section 3.1 that 0 · v = 0V for any
vector v ∈ V . So

L(0V ) = L(0 · v) L linear
= 0L(v) = 0W .

So a linear transformation always maps 0V to 0W . This is different than most lines we know,
which can have varying y-intercepts. Linear transformations in Rn always go through the
origin. (However, linear functions of the form y = ax + b do not have to go through the
origin. In this class we will use “transformation” to make the distinction.)

We can use this fact to find out, using the properties of −v, that

0W = L(0V ) = L(v − v)
L linear
= L(v) + L(−v).

Once we subtract by L(−v) on both sides, it follows that L(−v) = −L(v).

Example 4.1.8. The mapping L : R2 → R3 defined by L(x) = (x2, x1, x1 + x2)
T is linear.

Find the matrix of L.
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Now that we have established a connection between matrices and transformations in the
previous example, let’s define some corresponding subspaces. See if you recognize what
these definitions would be if the transformation L were replaced by a matrix.

Definition 4.1.2. Given a linear transformation L : V → W , we say the kernel of L is
defined by

ker(L) = {v ∈ V : L(v) = 0W}.

The range of L is defined as

ran(L) = {w ∈ W : w = L(v) for some v ∈ S}.

One should think of the kernel of L like the nullspace of a matrix. The range of L, on the
other hand, is like the column space of a matrix. We will be connecting these concepts in
the next section. Much like the nullspace and column space of a matrix, we get the following
theorem:

Theorem 4.1. If L : V → W is a linear transformation, then

(i) ker(L) is a subspace of V .

(ii) ran(L) is a subspace of W .

Example 4.1.9. Let L be a linear operator on R2 be defined by L(x) =

[
x1

0

]
. Find the

kernel and range of L and state their dimensions.

Example 4.1.10. Let D : P3 → P3 be the differentiation operator. Find the kernel and
range of D and state their dimensions.
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Section 4.2

Matrices of Transformations
Objectives:

• Represent linear transformations as matrix multiplications

• Use matrices to construct dilations, shifts, rotations, and other transformations in R2

Example 4.2.1. Let v =

[
2
1

]
be a vector and let L : R2 → R2 be the transformation that

rotates a given vector by 90 degrees counterclockwise. Find L(v).
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In a similar way to how we found the matrix of the transformation L in the previous example,
we can find a matrix corresponding to any linear transformation:

Theorem 4.2. If L is a linear transformation mapping Rn into Rm, there is an m × n
matrix A such that

L(x) = Ax

for each x ∈ Rn. In fact, the jth column vector of A is given by aj = L(ej).

The matrix A defined in this way is called the matrix transformation of L, or simply the
matrix of L.

Example 4.2.2. Define the linear transformation L : R3 → R2 by

L(x) = (x1 + x2, x2 + x3)
T .

Using the theorem above, find the matrix of L.

We return to Section 3.5 and recall that a transition matrix U from a basis {u1, . . . ,un} to
{e1, . . . , en} helps us transition from the coordinates in one basis to back to the standard
coordinates. Say we wish to write a linear transformation L : V → W with respect to the
basis E = {v1, . . . ,vn} in V and the basis F = {w1, . . . ,wm} in W .

Recall that before we have to construct the transition matrix U1 from E to the standard basis,
as well as the transition matrix U2 from F to the standard basis, then get the coordinate
matrix U−1

2 U1 to go from E to F . We are now inserting a linear transformation into the
middle: once we have transitioned out of the basis of V into the standard basis, we map
our vectors through the transformation L, then map them back into their desired final basis.
This gives us the following:
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Theorem 4.3. Let L : V → W be a linear transformation. Let A be the matrix of L.
Further suppose that E = {v1, . . . , vn} is a basis of V with transition matrix U1, and F =
{w1, . . . ,wm} is a basis of W with transition matrix U2. Then the matrix transformation
of L with respect to the bases E and F is given by

U−1
2 AU1.

We can follow this path using the diagram given above.

Example 4.2.3. Let L : R2 → R3 be the linear transformation defined by

L(x) = (x2, x1 + x2, x1 − x2)
T .

Find the matrix representation of L with respect to the ordered bases {u1,u2} and {b1,b2,b3},
where

u1 = (1, 2)T , u2 = (3, 1)T , b1 = (1, 0, 0)T , b2 = (1, 1, 0)T , b3 = (1, 1, 1)T .
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NOTE: If a linear transformation is already given in terms of the bases we need, then the
matrix transformation can be calculated much more quickly quickly.

Example 4.2.4. Let L : R2 → R2 be a linear transformation defined by

L(αb1 + βb2) = (α + β)b1 + 2βb2,

where b1 =

[
1
1

]
,b2 =

[
1
−1

]
. Find the matrix representation of L with respect to {b1,b2}.

Example 4.2.5. Let L : R3 → R2 be the linear transformation defined by

L(x) = x1b1 + (x2 + x3)b2,

where b1 =

[
1
1

]
and b2 =

[
−1
1

]
. Find the matrix of L with respect to the ordered bases

{e1, e2, e3} and {b1,b2}.
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Here is a page to take notes on common R2 transformations.
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Section 4.3

Similarity

Objectives:

• Discover a common formula used when analyzing linear operators in different bases

We begin this chapter by analyzing linear operators L : V → V and their matrix represen-
tations with respect to non-standard bases.

Example 4.3.1. Let L : R2 → R2 be given by L(x) = (2x1, x1 + x2). Write the matrix of L

with respect to the ordered basis

{[
1
1

]
,

[
−1
1

]}
.
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Note that our formula for finding the matrix transformation simplifies to

B = U−1AU

when L is a linear operator and when we are using only one ordered basis rather than two.
If two matrices A and B satisfy the equation above for any invertible matrix U , we say that
A is similar to B (or, equivalently, that B is similar to A, or simply that A and B are
similar).

Example 4.3.2. Let D be the differentiation operator on P3. Find the matrix A represent-
ing D with respect to {1, x, x2}. Then find the matrix B representing D with respect to
{1, 2x, 4x2 − 2}.

81



©2025 John Weeks

Example 4.3.3. Let L : R3 → R3 by defined by L(x) =

2 2 0
1 1 2
1 1 2

x. Find the matrix

representing L with respect to the ordered basis


 1
−1
0

 ,

−2
1
1

 ,

11
1

.
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Section 5.1

The Dot Product

Objectives:

• Review vector geometry: projections, dot product, distance, and orthogonality

Motivation: Orthogonal Basis In Section 1.3 we discussed that
orthogonal vectors - vectors which make a right-angle to each other when both are placed
in the same plane - are characterized by having a dot product of 0. We say a collection
{v1, . . . ,vn} in Rn is an orthogonal basis if the following two things are true:

(i) {v1, . . . ,vn} forms a basis for Rn

(ii) if i ̸= j ∈ [n], then vi is orthogonal to vj.

Example 5.1.1. Determine whether the following bases are orthogonal bases on R3.

(a) {e1, e2, e3} (b) {
[
1 0 0

]T
,
[
0 1 0

]T
,
[
0 1 1

]T}
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Orthogonal bases are more powerful than general bases - not only do their linear combinations
completely cover a space, but the geometry of these linear combinations shows that they are
each at right angles with each other.

Lattice formed by {e1, e2, e3}
Lattice formed by {e1, e2,

[
0 1 1

]T}
However, we have never seen how to make angles with functional vector spaces. Is there a
way to make an orthogonal basis in a functional vector space? Yes! It is also incredibly
useful, as it gives us an easy way to reconstruct complicated functions by looking at
their simpler projections onto an orthogonal basis. This is exactly the idea behind
Fourier series.

In order to discuss angles in functional vector spaces, we need to generalize the dot prod-
uct into something called an inner product. That is the thrust of this chapter. Before
beginning, let’s do a quick review of vectors.

Algebra of Vectors

Let a = ⟨a1, a2, a3⟩,b = ⟨b1, b2, b3⟩ be vectors in R3 and let c be a scalar.

(a) Scalar Multiplication ca = c⟨a1, a2, a3⟩ = ⟨ca1, ca2, ca3⟩

(b) Vector Magnitude ∥a∥ =
√

a21 + a22 + a23

(c) Vector Sum a+ b = ⟨a1 + b1, a2 + b2, a3 + b3⟩

(d) Vector Difference a− b = ⟨a1 − b1, a2 − b2, a3 − b3⟩

(e) Unit Vector The vector a
∥a∥ is a unit vector of length 1 in the direction of a.

(f) Standard Unit Vectors The vectors i, j, and k are unit vectors in the directions of
the positive x, y, and z-axes, respectively.
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Definition 5.1.1. Let x,y be vectors in Rn. We define the dot product of two vectors x
and y to be

x · y = xTy = x1y1 + x2y2 + · · ·+ xnyn.

The magnitude of a vector x is defined as (x · x)1/2 =
√

x2
1 + x2

2 + · · ·+ x2
n.

The distance between two vectors x and y is defined to be ∥x− y∥.

The angle between two nonzero vectors x and y is defined by

θ = cos−1

(
x · y

∥x∥∥y∥

)
.

(If x,y are unit vectors, meaning that ∥x∥ = 1 = ∥y∥, then this formula can be simplified
to merely cos−1(x · y).)

Theorem 5.1 (Cauchy-Schwarz Inequality). If x,y are nonzero vectors in Rn, then

|x · y| ≤ ∥x∥∥y∥.

The only time equality holds is if one vector is a multiple of the other.

Proof. Unraveling the angle equation in the above definition and solving for x · y, we get
that

x · y = ∥x∥∥y∥ cos θ.

Since | cos θ| ≤ 1, we get that |x · y| = ∥x∥∥y∥| cos θ| ≤ ∥x∥∥y∥. If these equality holds, this
must mean that | cos θ| = 1, so solving for θ we get that θ is either 0 degrees or 180 degrees.
Hence the two vectors are either in the same or opposite directions, meaning the two vectors
are multiple of each other.

Definition 5.1.2. We define the vector projection of a vector b onto a vector a to be

proja b =

(
b · a
a · a

)
a.

The length of this vector is called the scalar projection of b onto a, which can be calculated

as
b · a
∥a∥

.

Example 5.1.2. Find the projection of
[
1, 4
]T

onto the line y = 1
3
x.
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Section 5.2

Orthogonal Subspaces

Objectives:

• Decompose Rn into subspaces and their orthogonal complements

• Revisit nullspaces and ranges of A, then connect these spaces with nullspaces and
ranges of AT

The concept of orthogonality can also apply to subspaces, as is pictured above. Note that,
in the plane above, any vector in the plane would be considered orthogonal to any vector in
the line. This is an example of the below definition:

Definition 5.2.1. Two subspaces X and Y of Rn are orthogonal if x · y = 0 for every
x ∈ X and every y ∈ Y . If X and Y are orthogonal, we write X ⊥ Y .

We define the orthogonal complement of X, X⊥, to be the set of all vectors in V which
are orthogonal to every vector in X.

Note that Y ⊥ contains all vectors orthogonal to Y .
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Example 5.2.1. Show that the line Y spanned by
[
1,−1, 1

]T
is orthogonal to the plane

x− y + z = 3.

Example 5.2.2. Would Y ⊥ = span


11
0

? Would Y ⊥ = {(x, y, z) ∈ R3 : x− y+ z = 3}?

Explain.

Here are some facts about orthogonal complements:

• If x ∈ X, x ∈ Y , and X ⊥ Y , then x is orthogonal to itself. So ∥x∥2 = x · x = 0, so
x = 0.

• If S is a subspace of Rn, then S⊥ is also a subspace of Rn.

• If S is a subspace of Rn, then every vector z can be written uniquely as a sum of
vectors p+ o, where p ∈ S and o ∈ S⊥.

• If S is a subspace of Rn, then (S⊥)⊥ = S.
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This third bullet point will come in handy in the next section, so let’s get an intuitive reason
as to why it might be true with a picture. Note that the vector p below is the projection of
z onto the plane below, while o = z− p.

Let’s look at a place where we might be surprised to find orthogonal complements. Before
we do this, we quickly define the cross product of two vectors:

Definition 5.2.2. Given two non-zero vectors v =
[
v1, v2, v3

]T
and w =

[
w1, w2, w3

]T
in

R3, we define v ×w, the cross product of v and w, to be∣∣∣∣∣∣
i j k
v1 v2 v3
w1 w2 w3

∣∣∣∣∣∣ .
we recall that v ×w has the property of being orthogonal to both v and w.

Example 5.2.3. Find the orthogonal complement of the subspace of R3 spanned by

12
1


and

 1
−1
2

.
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Example 5.2.4. Let A =

1 1 2
0 1 1
1 3 4

. Find the bases for N(A), R(AT ), N(AT ), and R(A).
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Example 5.2.5. Find the orthogonal complement of R(A) and of R(AT ). Then write two
equations connecting pairs among N(A), R(AT )⊥, N(AT ), and R(A)⊥.

This connection between these subspaces is not coincidental. The subspaces N(A), R(A),
N(AT ), and R(AT ) are known as the fundamental subspaces of A. Let’s try to get to the
bottom of this fact.

Theorem 5.2. If A is an m× n matrix, then N(A) = R(AT )⊥ and N(AT ) = R(A)⊥.

Proof. Let x ∈ N(A). Then by definition, Ax = 0, so by isolating each row of this multipli-
cation we get[

ai1, ai2, . . . , ain
]T ·

[
x1, x2, . . . , xn

]T
= ai1x1 + ai2x2 + · · ·+ ainxn = 0

for i ∈ [m] being any row of the matrix A.

This row of A would be a column of AT . This means that
[
ai1, ai2, . . . , ain

]T
is in the column

space of AT , or in the range of AT . So the above says that the dot product of any column
of AT and any element in N(A) is zero, which is the definition of orthogonal.

On the other hand, if x ∈ R(AT )⊥, then x is orthogonal to each of the column vectors of
AT , or all the row vectors of A. By retracing our steps through the paragraphs above, this
means that Ax = 0, which means x ∈ N(A). So N(A) = R(AT )⊥ as desired. The second
equation comes from applying this result to B = AT :

N(B) = R(BT )⊥ ⇐⇒ N(AT ) = R((AT )T )⊥ = R(A)⊥.

Example 5.2.6. Find R(A) if A =

[
1 0
2 0

]
. Then use the Fundamental Subspaces theorem

to find N(AT ).
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Section 5.3

Application: Least Squares Problems

Objectives:

• Use linear regression to find least-squares solution lines to more complicated data lines

At this point we have gathered enough theory to develop a useful tool for data regression.
When given an overdetermined system of equations of the form Ax = b for a fixed matrix
A and vector b, it is typical that we will not find a solution x. This is because we have
more equations than unknowns - there are so many constraints on the set of what x can be.
However, we have now developed a notion of distance in Rm, so we can set a new goal:

Find x ∈ Rn such that ∥b− Ax∥ is minimized.

It is possible that the minimum value of ∥b− Ax∥ is 0. In that case, b− Ax = 0, and the
vector x satisfies the equation Ax = b. Great! In any other case, the vector x will be the
vector such that Ax is the “closest” it can get to b. Let’s define the residual to be

r(x) := ∥b− Ax∥.

Another context where we are finding the “closest” point to a given line or plane is with
projections... so our picture from our previous section will be useful to bring back.
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Note that the vector b is not in the subspace R(A), the range of A. So there is no vector x
such that Ax = b, because b is not in the range of A. However, the vector p - the projection
of b onto R(A) - is very close to b. Indeed, at this point r(x) will be the smallest possible
distance!

Let x̂ be the value of x such that Ax = p. Then note that r(x̂) ∈ R(A)⊥. From our previous
section we know that R(A)⊥ = N(AT ). So b− Ax̂ ∈ N(AT ), meaning that

AT (b− Ax̂) = 0 ⇐⇒ ATAx = ATb.

Is this new equation useful? It is: ATA is now an n × n matrix, meaning that there are n
equations with n unknowns. If A has linearly independent vectors, then so does ATA, and
we get the following theorem:

Theorem 5.3. If A is an m× n matrix of rank n, the normal equations

ATAx = ATb

have a unique solution
x̂ = (ATA)−1ATb.

The vector x̂ is the unique least squares solution of the system Ax = b.

Example 5.3.1. Find the least squares solution of the system

x1 + x2 = 3

−2x1 + 3x2 = 1

2x1 − x2 = 2.
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Example 5.3.2. Given the data
x 0 3 6
y 1 4 5

, find the best least squares fit by a linear

function.
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Example 5.3.3. Find the best quadratic least squares fit to the data:
x 0 1 2 3
y 3 2 4 4
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Section 5-4

Inner Product Spaces

Objectives:

• Generalize the dot product for Rn to the concept of inner product for a special class
of vector spaces

• Redefine vector geometry: projections, distance, and orthogonality

The definition in the graphic above is an example of an inner product on C[a, b]. Much
like the dot product, it inputs two vectors (in this case, functions f and g), and outputs a
numerical value. This mapping needs to satisfy a few more conditions in order to be called
an inner product:

Definition 5.4.1. An inner product on a vector space V is an operation on V that assigns
to each pair of vectors x,y ∈ V a real number ⟨x,y⟩ satisfying the following:

(i) ⟨x,x⟩ ≥ 0 with equality iff x = 0; we define ∥x∥ =
√
⟨x,x⟩ to be the norm of x.

(ii) ⟨x,y⟩ = ⟨y,x⟩ (that is, the order of x and y doesn’t matter in the inner product)

(iii) ⟨·, ·⟩ is linear in the first argument; that is,

⟨αx+ βy, z⟩ = α⟨x, z⟩+ β⟨y, z⟩.

A vector space (V,+, ·, ⟨·, ·⟩) with an inner product is called an inner product space.

Note that (ii) and (iii) together combine to show that the inner product is also linear in the
second argument, because

⟨x, αy + βz⟩ = ⟨αy + βz,x⟩ = α⟨y,x⟩+ β⟨z,x⟩ = α⟨x,y⟩+ β⟨x, z⟩.
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Example 5.4.1. Show that the dot product is an inner product on R2.

Example 5.4.2. Define ⟨f, g⟩ = 1

π

∫ π

−π

f(x)g(x) dx as the inner product on C[−π, π]. Find

⟨sin(x), cos(x)⟩.

96



©2025 John Weeks

Given an inner product space V , we say that two vectors u,v ∈ V are orthogonal if
⟨u,v⟩ = 0. Now that we can define angles in inner product spaces, we can make similar
theorems about inner product spaces that we can in Rn:

Theorem 5.3 (The Pythagorean Law). If u and v are orthogonal vectors in an inner product
space V , then

∥u+ v∥2 = ∥u∥2 + ∥v∥2.

Example 5.4.3. Show that sin(x) ⊥ cos(x) in C[−π, π]. Then find ∥sin(x) + cos(x)∥.
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Theorem 5.4 (Cauchy-Schwarz Inequality). If u and v are any two vectors in an inner
product space V , then

|⟨u, v⟩| ≤ ∥u∥∥v∥.

The proof of this theorem is slightly trickier, since we have not defined a bona fide angle θ
yet. We will do so once we have proven this theorem.

Proof. If either u = 0 or v = 0 this is clear, so let u,v ̸= 0. Let p be the vector projection
of u onto v. Then we have two facts:

(i) ∥u∥2 = ∥p∥2 + ∥u− p∥2. (Pythagorean Law)

(ii)
⟨u,v⟩
∥v∥

= ∥p∥. (Definition of scalar projection)

Combining these two facts we get the equation

(⟨u,v⟩)2

∥v∥2
= ∥p∥2 = ∥u∥2 − ∥u− p∥2.

Multiplying both sides by ∥v∥2 we get

(⟨u,v⟩)2 = ∥u∥2∥v∥2 − ∥u− p∥2∥v∥2 ≤ ∥u∥2∥v∥2.

Therefore, taking square roots of both sides gives us that |⟨u,v⟩| ≤ ∥u∥∥v∥, as desired.

We define the angle θ between two non-zero vectors u and v to be

θ = cos−1

(
⟨u,v⟩
∥u∥∥v∥

)
.

Example 5.4.4. Let ⟨f, g⟩ =
∫ 1

0
f(x)g(x) dx be the inner product on C[0, 1]. Find the angle

between the vectors 1 and x on C[0, 1].
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Example 5.4.5. Find the angle between the vectors 1 and x in the following vector spaces:

(a) C[0, 1] with the inner product ⟨f, g⟩ =
∫ 1

0
fg dx

(b) C[−1, 1] with the inner product ⟨f, g⟩ =
∫ 1

−1
fg dx

(c) P2 with the inner product ⟨p, q⟩ = p(0)q(0) + p(1)q(1)

99



©2025 John Weeks

Section 5.5

Orthonormal Sets

Objectives:

• Revisit orthogonal sets and find their applications to least squares problems

• Define orthogonal matrices and use them to compute vector projections

We begin by revisiting the definition of orthogonal basis that we introduced in Section 5-1.
Recall that this definition had two components: it asked that our set of vectors {v1, . . . ,vn}
be a basis for a vector space while also having the property that i ̸= j ⇒ vi ⊥ vj. This
latter property is important enough to merit its own definition:

Definition 5.5.1. Let v1, . . . ,vn be nonzero vectors in an inner product space V . If ⟨vi,vj⟩ =
0 whenever i ̸= j, then {v1,v2, . . . ,vn} is said to be an orthogonal set of vectors.

If we suppose further that ∥vi∥ = 1 for all i - that is, that each vector in the set is a unit
vector - then we say that {v1, . . . ,vn} is an orthonormal set of vectors.

Here are a few facts about these sets of vectors:

• If {v1, . . . ,vn} is an orthogonal set of vectors, then normalizing these vectors by
dividing each one by its length does not change the angles between the vectors - it only

scales them. So

{
v1

∥v1∥
, . . . ,

vn

∥vn∥

}
is an orthonormal set of vectors.

• If {v1, . . . ,vn} is an orthogonal set of vectors, then it is also a linearly independent
set.
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Let’s give a brief explanation of this last item. Suppose we have this orthogonal set {v1, . . . ,vn}
as part of the linear independence equation

c1v1 + c2v2 + · · ·+ cnvn = 0.

Then taking the inner product with v1 on both sides, we get

⟨v1, c1v1 + · · ·+ cnvn⟩ = c1⟨v1,v1⟩+ · · ·+ cn⟨v1,vn⟩ = ⟨v1,0⟩ = 0.

By definition of orthogonality, the left hand side simplifies down to just c1⟨v1,v1⟩. Since
⟨v1,v1⟩ is not zero, we must have that c1 is equal to 0. Repeat this process by taking the
inner product with each vi, we get that all constants equal 0, as desired.

Example 5.5.1. Show that
{[

1, 1, 1
]T

,
[
2, 1,−3

]T
,
[
4,−5, 1

]}
is an orthogonal set in R3.

Then form an orthonormal set of scalar multiples of these vectors.

Example 5.5.2. Show that {1, x} is an orthogonal set in C[−1, 1]. Then form an orthonor-
mal set of scalar multiples of these vectors.
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Example 5.5.3. Show that {1, cos(x), cos(2x), . . . , cos(nx)} is an orthogonal set of vectors
in C[−π, π] when equipped with the inner product

⟨f, g⟩ = 1

π

∫ π

−π

f(x)g(x) dx.

Then form an orthonormal set of scalar multiples of these vectors. (Hint: cos(kx) cos(jx) =
1
2
[cos((k − j)x) + cos((k + j)x)].)

102



©2025 John Weeks

We say that an orthonormal basis is an orthonormal set that is also a basis. The set we
found in Example 5.5.1 is an orthonormal basis, while the set we found in Example 5.5.2 is
not an orthonormal basis. (We know this because C[−π, π] contains all polynomials, which
we know to be infinite dimensional from a previous section.)

Theorem 5.5. Let {u1, . . . ,un} be an orthonormal basis for an inner product space V . Let
u, v be vectors in V . Then we have the following results:

(i) v =
∑n

i=1⟨v,ui⟩ui.

(ii) If u =
∑n

i=1 aiui and v =
∑n

i=1 biui, then

⟨u, v⟩ =
n∑

i=1

aibi.

(iii) (Parseval’s Identity) ∥v∥2 =
∑n

i=1(⟨v,ui⟩)2.

The first is true by orthonormality: since {u1, . . . ,un} is a basis, we have v = c1u1+· · ·+cnun

for some constant ci for i ∈ [n]. Then

⟨v,u1⟩ = ⟨c1u1 + · · ·+ cnun,u1⟩ = c1⟨u1,u1⟩+ · · ·+ cn⟨un,un⟩.

Note that the only nonzero term in this right-hand side is the first one, which is equal to c1
all by definition of orthonormal. Repeating this process for all other vectors ui we get the
result.

The second item follows directly from the first and the linearity of the inner product. The
third item comes from applying the second item to the same vector and calculating ⟨v,v⟩ =
∥v∥2, then substituting in the constants ⟨v,ui⟩ from the first item.

Example 5.5.4. The set

{
1√
2
, cos(2x)

}
is orthonormal in C[−π, π] with the inner product

given in Example 5.5.3. The function sin2(x) can be written as a linear combination of this
orthonormal set in the following way:

sin2(x) =

(
1√
2

)
1√
2
+

(
−1

2

)
cos(2x).

Using this information, rewrite the integral
∫ π

−π
sin4(x) dx as an inner product and

calculate its value.

We note that
∫ π

−π
sin4(x) dx = π· 1

π

∫ π

−π
sin2(x)·sin2(x) dx = π⟨sin2(x), sin2(x)⟩ = π∥sin2(x)∥2.

Now we can use the Pythagorean Law!

∥sin2(x)∥2 =
∥∥∥∥( 1√

2

)
1√
2

∥∥∥∥2 + ∥∥∥∥(−1

2

)
cos(2x)

∥∥∥∥2 = ( 1√
2

)2 ∥∥∥∥ 1√
2

∥∥∥∥2 + (−1

2

)2

∥cos(2x)∥2.
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We notice that, since the set
{

1√
2
, cos(2x)

}
is orthonormal, both of these vectors

have length 1. So
∥∥∥ 1√

2

∥∥∥2 = ∥cos(2x)∥ = 1. So

∥sin2(x)∥2 =
(

1√
2

)2

+

(
−1

2

)2

=
1

2
+

1

4
=

3

4
.

Therefore, ∫ π

−π

sin4(x) dx = π∥sin2(x)∥2 = 3π

4
.

Example 5.5.5. Continuing from Example 5.5.4: find 1
π

∫ π

−π
sin2(x) cos(2x) dx.

We begin by rewriting this integral as an inner product.

1

π

∫ π

−π

sin2(x) cos(2x) dx = ⟨sin2(x), cos(2x)⟩.

We cannot use Pythagorean Law here because, in its current form, this expres-
sion cannot be written as a length. Instead, we use the decomposition of sin2(x)
once more:

⟨sin2(x), cos(2x)⟩ =
〈(

1√
2

)
1√
2
+

(
−1

2

)
cos(2x), cos(2x)

〉
=

1√
2

〈
1√
2
, cos(2x)

〉
+

(
−1

2

)
⟨cos(2x), cos(2x)⟩.

Since the set
{

1√
2
, cos(2x)

}
is orthonormal, we can evaluate these two inner prod-

ucts! The first one is 0, since the two vectors are orthonormal. The second one
is 1, since this is the length of this vector squared which is 1! So

1

π

∫ π

−π

sin2(x) cos(2x) dx = ⟨sin2(x), cos(2x)⟩ = 1√
2
· 0− 1

2
· 1 = −1

2
.
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We already have described an n× n invertible matrix as a matrix where its column vectors
form a basis for Rn. We have another definition in the case that a matrix’s column vectors
form an orthonormal basis for Rn:

Definition 5.5.2. An n × n matrix Q is said to be an orthogonal matrix if the column
vectors of Q form an orthonormal set in Rn.

The following properties are true for all orthogonal matrices:

Orthogonal Matrices

If Q is an n× n orthogonal matrix, then

(a) the column vectors of Q form an orthonormal basis for Rn

(b) QTQ = I

(c) QT = Q−1

(d) ⟨Qx, Qy⟩ = ⟨x,y⟩

(e) ∥Qx∥ = ∥x∥

The property “QTQ = I” holds even when the columns of the matrix form an orthonormal
set rather than an orthonormal basis for our space. That is, whenever a matrix A has more
rows than columns - like in the case of a least-squares problem - it is still true that ATA = I.
Recall that a least-squares solution to the equation Ax = b is equal to x = (ATA)−1ATb.
We can simplify using this property to get:

Theorem 5.6. If the column vectors of an m × n matrix A form an orthonormal set of
vectors in Rm, then the solution to the least squares problem Ax = b is

x̂ = (ATA)−1ATb = ATb.

We can combine this theorem with the items from the first theorem in this section to find
least squares approximations using the process outlined in the next example.
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Example 5.5.6. Find the best least squares approximation to ex on the interval [0, 1] by a
linear function.
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We end this section by discussing trigonometric polynomials, which are polynomials of
the form

tn(x) =
a0
2

+
n∑

k=1

(ak cos(kx) + bk sin(kx)).

As an extension of Example 5.5.2, we can see that the collection of functions{
1√
2
, cos(x), cos(2x), . . . , cos(nx)

}
is an orthonormal set in C[−π, π] with respect to the inner product ⟨f, g⟩ = 1

π

∫ π

−π
f(x)g(x) dx.

In fact, using more sum-to-product formulas from trigonometry, we can determine that the
functions {sin(x), sin(2x), . . . , sin(nx)} can also be added to this orthonormal set to give us{

1√
2
, cos(x), cos(2x), . . . , cos(nx), sin(x), sin(2x), . . . , sin(nx)

}
is an orthonormal set in C[−π, π].

Even if a function f is not in the span of this set, we can use this set to find a least squares
approximation. Just as in our previous example, the constants ak, bk for k ∈ {1, 2, . . . }
above can be found in the following way (we will find a0 below):

ak = ⟨f, cos(kx)⟩ = 1

π

∫ π

−π

f(x) cos(kx) dx

bk = ⟨f, sin(kx)⟩ = 1

π

∫ π

−π

f(x) sin(kx) dx

Note that ⟨f, 1√
2
⟩ 1√

2
= ⟨f, 1⟩1

2
by linearity of the inner product, so we define

a0 = ⟨f, 1⟩ = 1

π

∫ π

−π

f(x) dx

since we are already dividing our function by 2 in the trigonometric polynomial formula.
The constants ak and bk are called the Fourier coefficients of f .
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Example 5.5.7. Find the best least squares approximation to f(x) = |x| on [−π, π] by a
trigonometric polynomial of degree less than or equal to 2.

A trigonometric polynomial of degree (at most) 2 is of the form

a0
2

+ a1 cos(x) + b1 sin(x) + a2 cos(2x) + b2 sin(2x).

We use the formulas from the previous page to calculate:

a0 = ⟨f(x), 1⟩ = ⟨|x|, 1⟩ = 1

π

∫ π

−π

|x| dx =
2

π

∫ π

0

x dx = π

a1 = ⟨f(x), cos(x)⟩ = ⟨|x|, cos(x)⟩ = 1

π

∫ π

−π

|x| cos(x) dx =
2

π

∫ π

0

x cos(x) = − 4

π

b1 = ⟨f(x), sin(x)⟩ = ⟨|x|, sin(x)⟩ = 1

π

∫ π

−π

|x| sin(x) = 0

a2 = ⟨f(x), cos(2x)⟩ = ⟨|x|, cos(2x)⟩ = 1

π

∫ π

−π

|x| cos(2x) = 2

π

∫ π

0

x cos(2x) = − 1

π

b2 = ⟨f(x), sin(2x)⟩ = ⟨|x|, sin(2x)⟩ = 1

π

∫ π

−π

|x| sin(2x) = 0

So plugging these in we get our trigonometric polynomial to be

π

2
− 4

π
cos(x) + 0 sin(x)− 1

π
cos(2x) + 0 sin(2x).
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Section 5.6

Gram-Schmidt Orthogonalization

Objectives:

• Construct an orthogonal basis from any basis using vector projections

• Formulate QR factorizations to solve least squares problems

Example 5.6.1. Let W = span{x1,x2}, where x1 =

36
0

 and x2 =

12
2

. Construct an

orthogonal basis {v1,v2} for W .
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Example 5.6.2. Let x1 =


1
1
1
1

, x2 =


0
1
1
1

, and x3 =


0
0
1
1

. If W = span{x1,x2,x3} ⊂ R4,

find an orthogonal basis of W .

This process of orthogonalizing is called Gram-Schmidt orthogonalization. We summa-
rize this process below:

Gram-Schmidt Orthogonalization

Let {x1, . . . ,xp} be a basis for a nonzero subspace W ⊂ Rn. Then define

v1 = x1

v2 = x2 −
x2 · v1

v1 · v1

v1

v3 = x3 −
x3 · v1

v1 · v1

v1 −
x3 · v2

v2 · v2

v2

...

vp = xp −
xp · v1

v1 · v1

v1 −
xp · v2

v2 · v2

v2 − · · · − xp · vp−1

vp−1 · vp−1

vp−1.

Then {v1, . . . ,vp} is an orthogonal basis for W .
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Example 5.6.3. Let

A =


1 −2 −1
2 0 1
2 −4 2
4 0 0

 .

Find an orthonormal basis for the column space of A.

Example 5.6.4. Starting with the basis {1, x} for P2, use Gram-Schmidt orthogonalization
to find an orthonormal basis for P2.
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Section 6.1

Eigenvalues and Eigenvectors

Objectives:

• Compute and recognize the eigenvalues and eigenvectors of a matrix

• Describe the geometry of a matrix transformation in R2

We return to our geometric visualization of matrices. In this chapter we will learn how to
describe what Av is without calculating it exactly. Let’s begin with a little exploration.

Example 6.1.1. Let A =

[
1 0
0 −1

]
. Are there any vectors v such that Av = v? Are there

any vectors v such that Av = −v?
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Any vector that does not rotate but only scales when mapped through a linear operator -
such as the vectors we found in the previous example - is called an eigenvector, and the
factor it scales by is called its eigenvalue. More formally, we have the following definition:

Definition 6.1.1. Let A be an n × n matrix. A scalar λ is said to be an eigenvalue of A
if there exists a nonzero vector x such that

Ax = λx.

The vector x is said to be an eigenvector belonging to λ.

In the previous example, the matrix A =

[
1 0
0 −1

]
has an eigenvector

[
1
0

]
with eigenvalue 1

and an eigenvector

[
0
1

]
with eigenvalue −1.

Example 6.1.2. Show that x =

[
2
1

]
is an eigenvector of A =

[
4 −2
1 1

]
. Compute its

eigenvalue.

There is a geometric way to interpret eigenvalues and eigenvectors. In the above, we can

say that the matrix A stretches any vector near

[
2
1

]
by a factor of 3. Once we have enough

eigenvalues and eigenvectors we can describe what A does to any vector.

The key to finding eigenvalues and eigenvectors lies in solving the equation Ax = λx. If
we subtract λx from both sides, we get Ax − λx = 0. We could factor out x if both A
and λ were matrices. So we multiply x by the identity matrix I on the left and get that
Ax− λIx = 0, which implies

(A− λI)x = 0.
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As a result we get the following statements to be equivalent:

(a) λ is an eigenvalue of A.

(b) (A− λI)x = 0 has a nontrivial solution.

(c) N(A− λI) ̸= {0}.

(d) A− λI is singular.

(e) det(A− λI) = 0.

This last condition in particular is useful - it is called the characteristic polynomial. We
will see the reason for this naming in the example below:

Example 6.1.3. Find the eigenvalues and eigenvectors of the matrix A =

[
3 2
3 −2

]
.
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Sometimes an eigenvalue can belong to a set of more than one linearly independent vectors.
We say that an eigenspace corresponding to an eigenvalue λ is the space of all eigenvectors
of λ. We say that λ has geometric multiplicity equal to the dimension of its eigenspace.

Example 6.1.4. Find the eigenvalues and corresponding eigenvectors of A =

2 −3 1
1 −2 1
1 −3 2

.
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Section 6.2

Linear Differential Equations

Objectives:

• Solve linear differential equations using matrices

Recall the differentiation operator D : C1[a, b] → C[a, b] defined by D(f) = f ′. This operator
can be extended to apply to multiple functions at the same time. For example, for functions
y1, y2 ∈ C1[a, b], the system of differential equations

y′1 = f(x), y′2 = g(x)

can be written as D(Y) =

[
f(x)
g(x)

]
, where Y =

[
y1
y2

]
. We will simplify this notation by

writing Y′ = D(Y).

We define the equations below to be a system of first-order linear differential equations:

y′1 = a11y1 + a12y2 + · · ·+ a1nyn

y′2 = a21y1 + a22y2 + · · ·+ a2nyn
...

y′n = an1y1 + an2y2 + · · ·+ annyn.

Simplifying this using our notation above, we get that this system is

Y′ = AY,

where A is the matrix of coefficients on the right-hand side of this system.
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Example 6.2.1. Solve the first-order linear differential equation y′ = λy.

Example 6.2.2. Solve the first-order system of linear differential equations Y′ = λY.

Example 6.2.3. Now let λ be an eigenvalue of A and let x be an eigenvector corresponding
to λ. Show our solution from Example 6.2.2 solves Y′ = AY.

Example 6.2.4. Show that, if Y1 and Y2 solve the system Y′ = AY, then so does αY1 +
βY2.
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Let’s apply this theory to an example.

Example 6.2.5. Solve the system

y′1 = 3y1 + 4y2

y′2 = 3y1 + 2y2.

Using this information, solve the initial value problem when given that, when t = 0,
y1 = 6 and y2 = 1:

y′1 = 3y1 + 4y2

y′2 = 3y1 + 2y2.
Y(0) =

[
6
1

]
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Example 6.2.6. Solve the system below:

y′1 = 4y1 + 3y2

y′2 = y2

Further suppose that, when t = 0, y1 = 1 and y2 = 1. Find the solution to the initial value
problem.
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Section 6.3

Diagonalization

Objectives:

• Discover matrices which are similar to diagonal matrices

• Use the matrix exponential to solve linear differential equations

A final use for eigenvalues and eigenvectors has us returning to the definition of similar
matrices from before. Recall that we said that row equivalent matrices A and B are similar,
in the sense that there exists some invertible matrix P such that

A = PBP−1.

We say that an n×n matrix A is diagonalizable if it is similar to a diagonal matrix. Let’s
see how this could be useful:

Example 6.3.1. Say that a matrix A is similar to the matrix

[
1 0
0 −1

]
. Calculate A2024.
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This is particularly useful in applications of Markov chains and solving linear differential
equations - we will explore this latter application soon. We can use eigenvalues and eigen-
vectors to discover a large class of matrices that are diagonalizable in this way.

We begin with a theorem that helps connect these two worlds:

Theorem 6.1. If λ1, . . . , λk are distinct eigenvalues of an n×n matrix A with corresponding
eigenvectors x1, . . . ,xk, then x1, . . . ,xk are linearly independent.

Proof. Consider these eigenvectors x1, . . . ,xk and let r ≤ k be the largest number such that
x1, . . . ,xr are linearly independent. If r = k, we are done, so let’s assume r < k. Then since
r + 1 is larger than r, the first r + 1 vectors must be linearly dependent. So

c1x1 + · · ·+ crxr + cr+1xr+1 = 0

has a nontrivial solution. Applying A to both sides of these equations, we get

c1Ax1 + · · ·+ crAxr + cr+1Axr+1 = A0 = 0.

These Axi can be simplified using the eigenvalue equation:

c1λ1x1 + · · ·+ crλrxr + cr+1λr+1xr+1 = 0.

We return briefly to the first equation in our proof and multiply the entire thing by λr+1:

c1λr+1x1 + · · ·+ crλr+1xr + cr+1λr+1xr+1 = 0.

Here is the trick: notice what would happen if we subtracted these last two equations. The
last terms would cancel out, meaning that we would have no xr+1 term. But the other terms
would not, because (for example) λ1 − λr+1 ̸= 0 - those two eigenvalues are distinct! This
means that we have shown that x1, . . . ,xr are linearly dependent after all, which contradicts
our choice of r. So there’s no way for r < k, and once again we are done!

Theorem 6.2. If an n × n matrix A has n linearly independent eigenvectors, then A is
diagonalizable.

Proof. For i ∈ [n], let xi be an eigenvector corresponding to λi. Let X :=
[
x1 x2 · · · xn

]
.

Then

AX =
[
Ax1 · · · Axn

]
=
[
λ1x1 · · · λnxn

]
=
[
x1 · · · xn

] λ1

. . .

λn

 .

This latter matrix is a diagonal matrix with eigenvalues on the diagonal and zeroes elsewhere.
Let’s call it D. So AX = XD.

Since X has linearly independent columns, it is invertible, so we can multiply both sides on
the right by X−1. So A = XDX−1 and A is diagonalizable by definition.

Note that combining these two theorems yields: if A has n linearly independent eigenvectors
OR n distinct eigenvalues, then A is diagonalizable. Let’s see an example.
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Example 6.3.2. Let A =

[
2 −3
2 −5

]
. Find matrices X and D such that A = XDX−1.
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Example 6.3.3. Let A =

3 −1 −2
2 0 −2
2 −1 −1

. Diagonalize A if possible, or explain why diago-

nalizing is not possible.
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We close with our application of diagonalization to linear differential equations. Recall from
Example 6.2.1 that we found the solution of the single-variable first-order linear differential
equation to be y(t) = ceta. If we were given an initial value of y(0) = y0, we would plug in
y0 for c to get the solution of the initial value problem to be

y(t) = y0e
ta.

In multiple variables, this solution also works. We replace the variables y and y0 with their
vector forms, and we replace the value a with the matrix A:

Y(t) = Y0e
tA.

We have not seen the value etA defined before, but we can define it using power series. Recall
that the Maclaurin series for the function ex is defined as

ex = 1 + x+
x2

2!
+

x3

3!
+ · · ·

We define the matrix exponential in the same way, replacing x to plug in A:

eA := 1 + A+
A2

2!
+

A3

3!
+ · · ·

In general this can be a cumbersome formula - we now have to solve for an infinite series!
But plugging a diagonal matrix in for this matrix exponential yields a neat formula. Let’s
define D to be the following n× n matrix:

D =

λ1

. . .

λn

 .

The blank space here and elsewhere denotes that the entries off of the diagonal are zeroes.
Then we have

eD = lim
m→∞

(
I +D +

1

2!
D2 + · · ·+ 1

m!
Dm

)

= lim
m→∞


∑m

k=0
1
k!
λk
1

. . . ∑m
k=0

1
k!
λk
n

 =

e
λ1

. . .

eλn

 .

Hence

etXDX−1

= Xt

(
1 +D +

D2

2
+ · · ·

)
X−1 = X

e
λ1

. . .

eλn

X−1.

Let’s see this used in an example.
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Example 6.3.4. Use the matrix exponential to solve the initial value problem

Y′ = AY, Y(0) = Y0

where

A =

[
3 4
3 2

]
, Y0 =

[
6
1

]
.

Example 6.3.5. Solve the initial value problem Y′ = AY, where A =

[
1 −2
0 −1

]
, where

Y0 =

[
1
1

]
.
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