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Section S.1

Partial Differential Equations

Objectives:

• Solve partial differential equations with boundary conditions using assumptions on the
separability of the solution

We now diverge from our discussion of linear algebra to discuss another application of one of
our new toys: Fourier coefficients (which we already motivated in Section 0-1). Fourier series
were discovered by French mathematician and physicist J.B.J. Fourier in attempt to solve a
problem regarding the flow of heat in a space given a controlled environment temperature.
This discovery sparked the birth of modern analysis, as it turns out to be an interesting
question whether Fourier series actually do anything. (We won’t get into that here! For us
Fourier series will do things. Pinky promise.)

We will assume all definitions from ordinary differential equations and naturally stretch the
meaning of a few words as we’ve learned them. For example, a general second-order linear
partial differential equation in two independent variables will be of the form

A
∂2u

∂x2
+B

∂2u

∂x∂y
+ C

∂2u

∂y2
+D

∂u

∂x
+ E

∂u

∂y
+ Fu = G.

Here the functions A through G may depend on the two independent variables x and y
but not on u. (This type of notation is very common - it makes writing the equations
a little easier.) If G = 0 the equation is homogeneous, while if G ̸= 0 it is called non-
homogeneous. These equations have general and particular solutions just as we’d expect
from ordinary differential equations.
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x2 − 5xy + 3y2 − x− y = 0

There are a few interesting subclasses of these
PDEs depending on whether B2 − 4AC is
greater than, less than, or equal to 0. In-
formally, the names are based on how these
equations look after taking what is known as
a Fourier transform. If B2 − 4AC > 0, for
example, the PDE is hyperbolic. A guide
image for this is to the left. If B2−4AC = 0,
the PDE is parabolic, while if B2−4AC < 0,
the PDE is elliptic.

Example S.1.1. Derive a partial differential equation describing a vibrating string with
constant tension τ and constant mass per unit length µ.

We will assume small vibrations on the string in this image. So the net upward vertical force
acting on ∆s is

τ sin θ2 − τ sin θ1.

We will make an approximation that sin θ ≈ tan θ since θ1, θ2 are small so that we may
introduce the derivative: ∑

F = τ
∂y

∂x

∣∣∣∣
x+∆x

− τ
∂y

∂x

∣∣∣∣
x

.

By Newton’s Second Law tells us that this sum of forces equals the mass of the string, µ∆s,

times the acceleration of the string, which is
∂2y

∂t2
+ ε (since ∆s isn’t zero, other forces are

at play, but if ∆s → 0 then ε → 0).

Since our vibrations are small, ∆s ≈ ∆x, so if we divide both sides by µ∆s we get

τ

µ

∂y
∂x

∣∣
x+∆x

− ∂y
∂x

∣∣
x

∆x
=

∂2y

∂t2
+ ε.

Taking the limit as ∆x → 0 (in which case ε → 0), we have

τ

µ

∂

∂x

(
∂y

∂x

)
=

∂2y

∂t2
⇐⇒ ∂2y

∂t2
= a2

∂2y

∂x2
,

where in the last step we set a2 = τ
µ
.
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The equation on the previous page is known as the vibrating string equation. Indeed,
most of our popular partial differential equations come from physics! The vibrating string
equation can be generalized into two dimensions using the equation

∂2z

∂t2
= a2

(
∂2z

∂x2
+

∂2z

∂y2

)
.

Here are a few more equations we will see:

• Laplace’s equation is given by ∇2v = 0. Recall that ∇ is the del operator given

by
〈

∂
∂x
, ∂
∂y
, ∂
∂z

〉
. So this equation written out looks like

∂2v

∂x2
+

∂2v

∂y2
+

∂2v

∂z2
= 0.

• the heat conduction equation is given by

∂u

∂t
= κ∇2u.

Here u(x, y, z, t) is the temperature at position (x, y, z) in a solid at time t. The
constant κ is a diffusivity constant of heat through the solid.

Note that Laplace’s equation is a special case of the heat conduction equation when we
assume that ∂v

∂t
= 0 in the heat conduction equation. This means the v we are solving for is

the steady-state temperature, which is the temperature after a long time has elapsed.

Example S.1.2. Show that u(x, t) = e−8t sin(2x) is a solution to the boundary value problem

∂u

∂t
= 2

∂2u

∂x2
, u(0, t) = u(π, t) = 0, u(x, 0) = sin(2x).

Notice that the “boundary” in this problem is given by the endpoints x = 0 and x = π. We
are also given an initial value on the time to fix what the value of the function is at t = 0.
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The Laplacian ∇2u is seen in other equations from fields of gravitation or electricity. We
record the Laplacian in cylindrical coordinates here since it will come in handy when dis-
cussing Bessel functions in Section S-3:

∇2u =
∂2u

∂r2
+

1

r

∂u

∂r
+

1

∂r2
∂2u

∂θ2
+

∂2u

∂z2
.

In the study of ordinary differential equations, we are accustomed to not making many
assumptions on our solutions in order to determine what they are. The story of PDEs is
very different; we are looking for patterns in the solutions we find so that when we see
similar equations we can assume our solution looks very similar. For example, in the second-
order linear PDE, if the functions A through F are constants, the general solution of the
homogeneous equation is found by assuming that

u = eax+by for constants a and b,

as we will see here.

Example S.1.3. Find solutions of

∂2u

∂x2
+ 3

∂2u

∂x∂y
+ 2

∂2u

∂y2
= 0.
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Example S.1.4. Solve the PDE ∂2z
∂x ∂y

= x2y.

Example S.1.5. Using the solution above, find the particular solution for which z(x, 0) = x2

and z(1, y) = cos(y).
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Example S.1.6. Solve
∂2u

∂x2
+

∂2u

∂y2
= 10e2x+y.

Example S.1.7. Solve
∂2u

∂x2
− 4

∂2u

∂y2
= e2x+y.
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One method of solution for boundary value problems is the separation of variables, which
is assuming that a solution can be expressed as a product of unknown functions, each of
which depends on only one of the independent variables. The success of this method hinges
on whether plugging in this form of equation into the PDE yields an equation of the form

F (x) = G(y)

for some functions F and G, in which case both must be equal to a constant.

Example S.1.8. Solve the boundary value problem

∂u

∂x
= 4

∂u

∂y
, u(0, y) = 8e−3y.
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Example S.1.9. Solve

∂u

∂t
= 2

∂2u

∂x2
, 0 < x < 3, t > 0, given that u(0, t) = u(3, t) = 0,

u(x, 0) = 5 sin(4πx) = 3 sin(8πx) + 2 sin(10πx), |u(x, t)| < M (i.e., u is bounded)

8



©2025 John Weeks

More space for Example S.1.9.

The previous example could be interpreted physically in the following way. A bar whose
surface is insulated has a length of 3 units (0 < x < 3) and has a diffusivity of 2 units. If its
ends are kept at temperature 0 and its initial temperature throughout is given by

u(x, 0) = 5 sin(4πx) = 3 sin(8πx) + 2 sin(10πx),

, what is the temperature at position x at time t?

How does the solution for Example 0.1.9 change if the initial condition on u(x, 0) changes to
a generic function u(x, 0) = f(x)?
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Section S.2

Fourier Series

Objectives:

• Analyze properties of Fourier series and use them for function expansions

• Use Fourier series to solve to PDEs

Recall from Section 5-5 that trigonometric integrals are useful in finding least squares ap-
proximations to functions in C[−π, π] (or, as we could have said with some small alterations,
C[−L,L]). In general, our functions are defined everywhere but are periodic, meaning that
after a certain amount of space they repeat. For the sake of simplicity, we will assume that
our period is centered at the origin so that we only need to focus on the interval [−L,L] to
create our Fourier coefficients.

Definition S.2.1. A function f(x) has a period P or is periodic if for all x, f(x + P ) =
f(x), where P is a positive constant. The least value of P > 0 is called the period of f(x).

The function sin(x) has periods of 2π, 4π, 6π, and mπ for m even, but we say its period is
2π. This period shortens if we consider sin(nx) for n a positive integer - the period of this
latter function is 2π

n
.

We will extend our definition of Fourier coefficients slightly to accommodates for periods
different from 2π:

Definition S.2.2. Let f(x) be defined in the interval [−L,L] and have period of 2L. The
Fourier series corresponding to f(x) is defined to be

a0
2

+
∞∑
n=1

(
an cos

nπx

L
+ bn sin

nπx

L

)
,

where the Fourier coefficients an and bn are

an =
1

L

∫ L

−L

f(x) cos
(nπx

L

)
dx

bn =
1

L

∫ L

−L

f(x) sin
(nπx

L

)
dx.
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Recall from the beginning of Section S-1 that it is an interesting question whether these
Fourier series are even equal to the function f(x) at all. They certainly are that way in
C[−π, π], but only because functions in this space satisfy what are known as the Dirichlet
conditions:

Theorem S.1. Suppose that

(i) f(x) is defined and single-valued except possibly at a finite number of points in (−L,L)

(ii) f(x) is periodic with period 2L

(iii) f(x) and f ′(x) are piecewise continuous in (−L,L).

Then the Fourier series of f converges to

(a) f(x0) if x0 is a point of continuity, or

(b)
limx→x0+ f(x) + limx→x0− f(x)

2
if x0 is a point of discontinuity.

Example S.2.1. Find the Fourier coefficients and Fourier series corresponding to the fol-
lowing function (with period 2π):

f(x) =

{
0 −5 < x < 0

3 0 < x < 5
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Recall that a function f(x) is odd if f(−x) = −f(x). Functions such as x3 and sin(x) are
odd functions.

Meanwhile, a function f(x) is even if f(−x) = f(x). Functions such as 2x6 − 5, cos(x), and
ex + e−x are even functions.

Whenever a function defined on (−L,L) is even, then by the equations above we only need to
define the function on (0, L) - for the rest of the function (outside of x = 0), f(−x) = f(x).
We leave it to the reader to see that plugging an even function in for the Fourier coefficients
bn will always yield a value of zero.

Odd functions are also only typically defined on (0, L), as they can be defined on (−L, 0)
using the equation f(−x) = −f(x). We leave it to the reader to see that plugging an odd
function in for the Fourier coefficients an will always yield a value of zero.

Hence we have the following definitions:

Definition S.2.3. The half-range Fourier sine series comes from using the following
Fourier coefficients:

an = 0, bn =
2

L

∫ L

0

f(x) sin
nπx

L
dx.

The half-range Fourier cosine series comes from using the following Fourier coefficients:

bn = 0, an =
2

L

∫ L

0

f(x) cos
nπx

L
dx.

Example S.2.2. Expand f(x) = sin(x), 0 < x < π, in a Fourier cosine series.
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Example S.2.3. Expand f(x) = x, 0 < x < π in a half-range (a) sine series, and (b) cosine
series.
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Example S.2.4. Returning to Example S.1.9, find the temperature of the bar if the initial
temperature u(x, 0) = 25.
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Example S.2.5. A bar of length L, whose entire surface is insulated including its ends at
x = 0 and x = L, has initial temperature f(x). Determine the subsequent temperature of
the bar.
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More space for S.2.5
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Section S.3

Bessel Functions
Objectives:

• Use the Method of Frobenius to calculate Bessel functions of the first kind

• Apply Bessel functions to applications with circular and cylindrical objects

We begin with an example:

Example S.3.1. A solid conducting cylinder of unit height and radius and with diffusiv-
ity κ is initially at temperature f(r, z). (That is, the temperature does not rely on the
angle θ.) The entire surface is suddenly lowered to temperature zero and kept at this
temperature. Find the temperature at any point of the cylinder at any subsequent time.
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One of the equations we paused on comes up frequently in physical situations involving
circles and cylinders where the equation begin studied in includes the Laplacian. Indeed, we
could apply a similar method of solution to Laplace’s equation in cylindrical coordinates

∂2u

∂r2
+

1

r

∂u

∂r
+

1

r2
∂2u

∂θ2
+

∂2u

∂z2
= 0

and get a similar answer. This particular equation has a solution called a Bessel function of
order zero.

Let’s take a look at the theory behind Bessel functions:

Definition S.3.1. Bessel’s differential equation is a differential equation of the form

x2y′′ + xy′ + (x2 − n2)y = 0

where n ≥ 0 is a constant. The general solution of this equation is given by

y = c1Jn(x) + c2Yn(x),

where Jn(x) is a Bessel function of the first kind, which has a finite limit as x → 0 and
Yn(x) is a Bessel function of the second kind, which has infinite limit as x → 0.

In this section we will only deal with properties that are bounded throughout - hence we
will have no use for Bessel functions of the second kind.

One method of finding solutions to linear differential equations is called the method of
Frobenius. With this method we assume the equation has a solution of the form

y =
∞∑

k=−∞

ckx
k+β,

very much like a power series that can have negative or fractional powers. We will assume
that ck = 0 for k < 0 so that this solution begins with a c0-term.

Our strategy will be this: substitute this formula into the given PDE. Start by solving for
β by finding an indicial equation. Then using this β, find the values of the constants ck.
Plugging all of those back in will give us our solution.

We will use a couple new tools in our solution below: we define the Gamma function
Γ(n) =

∫∞
0

xn−1ex dx. In particular, if n is a positive integer, then Γ(n+ 1) = (n)!.

We will also see use of the double factorial, n!!, which is equal to n(n − 2)(n − 4) · · · 2 if
n is even or n(n− 2)(n− 4) · · · 1 if n is odd.
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Example S.3.2. Use the method of Frobenius to find series solution of Bessel’s differential
equation x2y′′ + xy′ + (x2 − n2)y = 0.

Assume our solution of the form y =
∑

ckx
k+β as given on the previous page. Then plugging

in this solution, we get

(x2 − n2)y =
∑

ckx
k+β + 2−

∑
n2ckx

k+β =
∑

ck−2x
k+β −

∑
n2ckx

k+β

xy′ =
∑

(k + β)ckx
k+β

x2y′′ =
∑

(k + β)(k + β − 1)ckx
k+β.

We add these terms together to get that∑
[(k + β)(k + β − 1)ck + (k + β)ck + ck−2 − n2ck]x

k+β = 0.

Now this function is identically zero, so every coefficient of this series must be zero. Hence
we must have, after simplifying,

[(k + β)2 − n2]ck + ck−2 = 0.

Let’s analyze what happens at a particular value of k, like k = 0. Since ck = 0 for k < 0,
we get c−2 = 0, so we get an indicial equation (β2 − n2)c0 = 0. Assuming that c0 ̸= 0
(otherwise we reset to another nonzero c-value and call that c0), we get that β2 = n2.

Technically here, β = ±n, yielding two cases. Both cases would need to be considered for a
full treatment, but we will only consider the case where β = n - the other case eventually
develops into Bessel functions of the second kind. Our full equation then becomes (after
simplifying)

k(2n+ k)ck + ck−2 = 0.

We observe what happens with this equation as we put in larger values for k:

c1 = 0, c2 = − c0
2(2n+ 2)

, c2 = 0, c4 = − c2
4(2n+ 4)

=
c0

2 · 4(2n+ 2)(2n+ 4)
, . . .

Plugging in these constants into our method of Frobenius solution we get the series

y = c0x
n + c2x

n+2 + c4x
n+4 + · · ·

= c0x
n

[
1− x2

2(2n+ 2)
+

x4

2 · 4(2n+ 2)(2n+ 4)
− · · ·

]
.

For many applications, we want a particular choice of c0, which we set equal to 1
2nΓ(n+1)

,
where

Γ(n) =

∫ ∞

0

xn−1ex dx

is the Gamma function. Hence we have the function

Jn(x) =
xn

2nΓ(n+ 1)

∞∑
k=0

(−1)k+1x2k(2n)!!

(2k)!!(2n+ 2k)!!
,

where n!! = n · (n− 2) · (n− 4) is the double factorial of n.
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The Bessel functions of the first kind, while being complicated, should be thought of as sine
and cosine functions. Observe the graphs of J0 and J1 above - notice any similarities?

An important distinction is that the Bessel functions scale when the independent variable in
Bessel’s differential equation is scaled. Let’s see what this means:

Example S.3.3. Replace the variable x with the variable λu, where λ is some nonzero
constant and u is otherwise independent. What does Bessel’s differential equation become
when written in terms of u?
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Example S.3.4. A circular plate of unit radius has its plane faces insulated. If the initial
temperature is F (r) and if the rim is kept at temperature zero, find the temperature of the
plate at any time.
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In order to continue this example we need some formulas from series of Bessel functions to
help us. Just as in this previous example, we will often run into a case where we have a
superposition of solutions involving Jn(λix), where (λi) are the positive roots of Jn(x) = 0.
In solving boundary conditions, we may end up with a line that looks like this:

f(x) = A1Jn(λ1x) + A2Jn(λ2x) + · · · =
∞∑
p=1

ApJn(λpx).

Just like the functions in a Fourier series, Bessel functions of the first kind have orthogonality
relations in cases like these. These orthogonality relations allows us to compute what Ap

must be:

Ap =
2

J2
n+1(λp)

∫ 1

0

xJn(λpx)f(x) dx.

Instead of integrating this, we will leave our answers in this form. Using this information,
complete the example from the previous page.
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Example S.3.5. Finish Example 0.3.1. (If time is short, stop when considering boundary
conditions.)
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Example S.3.6. (If time allows) A drum consists of a stretched circular membrane of unit
radius whose rim is fixed. If the membrance is struck so that its initial displacement is
F (r, θ) and is then released, find the displacement at any time.
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