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Proof Packet. This is worth 10% of your grade and will be updated as
we proceed through the class. It is possible to receive more than 100% on this
packet. Ways of receiving full points and extra credit on this packet include
but are not limited to: answering every question in this first section correctly,
presenting solutions to these problems in class, and making strong attempts
at the problems in the ”Challenging but Useful” section. You are encouraged
to collaborate with students in this class on these problems - you may not
use any source outside of the professor, your peers, or the course materials
outlined in the syllabus for this class.

1. Produce an infinite collection of sets A1, A2, A3, . . . with the following
properties:

(a) Every Ai has an infinite number of elements.

(b) If i ̸= j, Ai ∩ Aj = ∅.

(c)
⋃∞

i=1Ai = N.

2. Show, using just the field axioms, that for every n ∈ N we have n2 ≥ n.

3. Show that the dyadic rationals {m
2n

: m ∈ Z, n ∈ N} are dense in R.

4. Prove that for all k ∈ R, limn→∞
kn

n!
= 0.

5. (a) Show that if (xn) converges in R, then the sequence given by the
Cesàro mean

yn =
x1 + x2 + · · ·+ xn

n

also converges to the same limit.

(b) Give an example to show that it is possible for the sequences (yn) of
averages to converge even if (xn) does not.

6. Using theorems about sequences, prove that for sn = 1−n
2n

, the sequence

(sn) converges to 0. (Hint: prove that n <
(
3
2

)n
. Then use the Squeeze

Theorem.)

7. Find a monotonic subsequence in the sequence (rn), which consists of
all rational numbers in the interval (0, 1) arranged in some order.

8. Suppose (xn) is a sequence such that every subsequence (xni
) has a

further subsequence (xnmi
) that converges to a fixed x ∈ R. Prove that

xn → x.
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9. Let sn = (−1)n+1 1
n
be the alternating harmonic series. Show that∑

sn converges to a number between 1/2 and 1.

(a) First show that xn :=
∑n

k=1 sk satisfies 1
2
≤ xn ≤ 1 for all n.

(b) Complete the proof.

10. Show that, if (Iα)α∈A is a collection of disjoint open intervals, then the
collection is countable. (Hint: Q is dense in R.)

11. We give another definition for continuity of a function f .

(a) Let (a, b) for a < b be an open interval (here and elsewhere for
similar sets, a or b can be −∞ or ∞, respectively, if needed). Let
f : R → R be a continuous function. Show that there is an open
interval (c, d) such that f((c, d)) ⊂ (a, b) whenever (a, b) has non-
empty intersection with the range of f .

(b) Now assume that, for all a < b, f((c, d)) ⊂ (a, b) for some c < d.
Prove that f is continuous.

12. Let f : R → R be a function such that f(x+ y) = f(x) + f(y). We say
such a function f is additive. Further assume that f is continuous at
x = 0.

(a) Show that f(0) = 0 and f(−x) = −f(x) for all x ∈ R.
(b) Show that f(x) = kx for some k ∈ R whenever x ∈ N. Then repeat

for x ∈ Z and x ∈ Q.

(c) Show that f(x) = kx on R.

13. Show that there exists a uniformly continuous function on the set [−1, 1]
that is not Lipschitz continuous.

14. Since Q is countable, we can put all elements of Q in a sequence (this
would be a surjective function from N intoQ). This is called an enumer-
ation of the rationals, (q1, q2, q3, . . . ). The elements of this sequence
are not in any particular order and are certainly not in the “less than”
order.

Let (q1, q2, q3, . . . ) be an enumeration of the rationals in [0, 1]. Consider
the function f : [0, 1] → [0, 1] given by

f(x) =
∑
qn<x

1

2n
.
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(This notation may be new: we are summing over all n such that qn < x.
You can also write the undersum expression as {n : qn < x}.)

(a) Show that f is strictly increasing.

(b) Show that f is discontinuous at every rational number in (0, 1).
(Hint: prove that the left and right limits of f at a rational number
are not equal.)

(c) Show that f is continuous at every irrational point in its domain.

15. Define the Cantor set C in the following way: Let C0 = [0, 1], and
given Ck, let Ck+1 be the set where each interval in Ck has the middle
third taken out of it. For example, C1 = [0, 1/3]∪ [2/3, 1], C2 = [0, 1/9]∪
[2/9, 1/3] ∪ [2/3, 7/9] ∪ [8/9, 1], and so on. Let C :=

⋂∞
n=0Cn.

(a) Prove that C is uncountable. (Hint: Cantor’s Diagonalization
might be useful.)

(b) Prove that the complement of C is dense in [0, 1].

16. A function f has a symmetric derivative at a point x if

f ′
s(x) := lim

h→0

f(x+ h)− f(x− h)

2h

exists.

(a) Show that f ′
s(x) = f ′(x) at any point at which the latter exists.

(b) Show that f ′
s(x) may exist even when f is not differentiable at x.

17. Find a function f that is differentiable at x = 0 but is not differentiable
at any other point.

18. If f is twice differentiable on an open interval containing a and f ′′ is
continuous at a, show

lim
h→0

f(a+ h)− 2f(a) + f(a− h)

h2
= f ′′(a).

(Tools to consider using: the Mean Value Theorem, L’Hopital’s Rule,
and the symmetric derivative.)
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19. For an interval [a, b] where a ≥ 0 and n ∈ N, let qn := n

√
b
a
. Let

Pn := {a, aqn, aq2n, . . . , aqn−1
n , aqnn = b}. Calculate

∫ b

a

1

x2
dx by calculat-

ing upper and lower sums with these partitions as n increases.

(a) First give a formula for U(f, Pn). (Don’t forget that q is written in
terms of n.)

(b) Take a limit of this formula in n and simplify.

(c) Prove |U(f, Pn)− L(f, Pn)| limits to 0 as n increases.

20. We show that, for any integrable function f , |f | is also integrable and

that
∣∣∣∫ b

a
f dx

∣∣∣ ≤ ∫ b

a
|f | dx.

(a) First, let f be bounded on [a, b]. Define the following variables:

M = sup{f(x) : x ∈ A}, m = inf{f(x) : x ∈ A}
M ′ = sup{|f(x)| : x ∈ A}, and m′ = inf{|f(x)| : x ∈ A}.

Show that M −m ≥ M ′ −m′. (Hint: break into cases.)

(b) Show that if f is integrable on the interval [a, b], then |f | is also
integrable on this interval.

(c) Noting that f ≤ |f | and −f ≤ |f |, complete the proof using Prob-
lem 1.

Challenging but Useful. In what follows are some theorems we are
equipped to prove. Step-by-step instructions are given. Any satisfactory work
on these proofs is eligible for extra credit.

1. Do the following steps to prove the Schröder-Bernstein Theorem. This
theorem states: “Let f : X → Y and g : Y → X be one-to-one functions
on their respective sets. Then there exists a bijective function h : X → Y
(and hence |X| = |Y |).”
Let’s set a destination point for our proof. Let ⊔ denote the disjoint
union of sets. We will partition X = A ⊔ A′ and Y = B ⊔ B′ in such
a way that f maps A onto B and that g maps B′ onto A′. This means
f |A : A → B is bijective, as is g|B′ : B′ → A′, so their inverses exist. We
will then define h : X → Y to be

h(x) =

{
f |A(x) x ∈ A

g|−1
B′ (x) x ∈ B

.
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a) Show that h is well-defined (that is, it does not accidentally map
one point to two points), then show it is bijective.

b) Set A1 = X \ g(Y ) = {x ∈ X : x /∈ g(Y )}. (If A1 = ∅, then
g(Y ) = X and g is bijective.) Inductively define An+1 = g(f(An)).
Show that the collection (An)n∈N consists of pairwise disjoint sets
in X. Show that, similarly, (f(An))n∈N consists of pairwise disjoint
sets in Y .

c) Let A =
⋃∞

n=1An and B =
⋃∞

n=1 f(An). Show that f maps A onto
B.

d) Let A′ = X \ A and B′ = Y \B. Show g maps B′ onto A′.

2. Prove, using the limit definition, that for all k ∈ N, limn→∞
kn

n!
= 0.

3. There is a separate proof of Bolzano-Weierstrass Theorem that does not
require the fact that every sequence contains a monotone subsequence.
We will walk through the steps here. We recall the theorem: every
bounded sequence (xn) contains a convergent subsequence.

a) Since (xn) is bounded, the elements of this sequence are all con-
tained in some interval [−M,M ] for some M ∈ R. Show that there
are infinitely many elements of (xn) in either [−M, 0] or [0,M ].

b) Let A1 be the set found above such that there are infinitely many
elements of (xn) in A1. Pick an1 to be an element in A1; prove that
there are infinitely many elements of xn in A1 such that n > n1.

c) Let (xnk
) be the subsequence of elements in A1 such that n > n1.

Let’s divide A1 in two: let m1 be the midpoint of A1, let A1
− :=

{x ∈ R : x ≤ m1} ∩ A, and let A1
+ := {x ∈ R : x ≥ m1} ∩ A.

Show that there are infinitely many elements of (xmk
) in either A1

−
or A1

+. (Do you see a pattern?)

d) Pick an element an2 to be an element of (xnk
) in which of A1

+ or
A1

− has infinitely many points. Prove that n2 > n1.

e) Give a general explanation of how to continue this process to find
(ank

) and prove this is a subsequence of (xn).

f) Complete the proof using the Squeeze Theorem.

4. Consider the collection S of Cauchy sequences in Q. We define an equiv-
alence relation: we say (sn) ∼ (tn) if the sequence (sn − tn) → 0. This
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equivalence relation induces a partition of S (remember from MATH
300?). We will call it S/ ∼. We define R = S/ ∼.

We will now examine this definition to see if it holds up to scrutiny.

a) Prove that ∼ is indeed an equivalence relation.

b) Prove that Q is in S.
c) Let s := (an), t := (bn) be representatives of equivalence classes

of S. Define s + t to be the equivalence class of (an + bn). Prove
this definition is well-defined : that is, for all representatives of the
equivalence classes of s and t, this definition always leads to the
equivalence class of (an + bn).

d) Define s · t to be the equivalence class of the sequence (an · bn).
Prove this definition is well-defined as well.

e) Prove that, for any real number s ̸= 0, there exists a real number
t such that s · t = 1.

f) Give a definition for a real number s to be greater than t, i.e., s > t.

5. In this problem we prove the Contraction Mapping Theorem for R:
Let f : R → R be a function such that, for some constant c such that
0 < c < 1,

|f(x)− f(y)| ≤ c|x− y|
for all x, y ∈ R. Then f has a fixed point y such that f(y) = y. Fur-
thermore, given any x ∈ R, the sequence (x, f(x), f(f(x)), . . . ) converges
to y.

(a) First show that f is uniformly continuous on R. (It is in fact
Lipschitz continuous, which means |f(x)− f(y)| ≤ M |x− y| for
some M > 0.)

(b) Pick a point x1 ∈ R. Now construct the sequence (x1, f(x1), f(f(x1)), . . . )
so that in general, xn+1 = f(xn). Show that (xn) is Cauchy.

(c) Let y = limn xn. Prove that f(y) = y. (Hint: use the definition of
y as the limit of a sequence.)

(d) Prove that it is the only fixed point of f .

(e) Complete the proof - i.e., show that any other starting point for
the sequence given in the theorem statement still converges to y.

6. We show the existence of a rather diabolical function.
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a) Prove that the set { m√
p
: p prime,m ∈ Z} is dense in R. (You may

use the fact that there are infinitely many prime numbers p, which
is usually proven in a number theory course.)

b) Show that there exists a well-defined function f that is additive
(i.e., f(x+ y) = f(x) + f(y)) where f is not continuous at 0.

You might wish to use the following statement in proving your
function is well-defined, and you may do so without proof: the set
{ 1√

p
: p prime} is linearly independent over Q (i.e., if

∑n
i=1

qi√
pi
= 0

for n ∈ N, (qi)n1 ⊂ Q, and pi distinct primes for all i, then qi = 0
for all i).

c) Prove your function in (b) is in fact discontinuous everywhere.

7. We prove that the Darboux integral is equivalent to the Riemann integral
on continuous functions. (It is in fact true for all functions in either
class, but this makes our arguments easier.) Recall that a function f
is Riemann integrable on [a, b] if limn→∞

∑n
k=1 f(a+

k
n
∆x)∆x exists,

where ∆x := b−a
n
. This summation is usually called the “right sum” in

Calculus. Throughout this problem, let f be a continuous function on
[a, b].

(a) Prove that (Darboux) integrable functions are also Riemann inte-
grable.

(i) Prove that the integrability criterion from class is equivalent to
the sequential integrability criterion: for all n ∈ N there
exist partitions Pn such that

U(f, Pn)− L(f, Pn) <
1

n
.

(ii) Let Pn = {a1, . . . , ak} be a partition of [a, b]. Find a ∆x such
that {a, a + ∆x, a + 2∆x, . . . , b} is a refinement of Pn. (Hint:
use induction on k, the number of elements in Pn.)

(iii) Complete the proof.

(b) Prove that a function is Riemann integrable (using right sums) if
and only if limn→∞

∑n
k=1 f(x + k−1

n
∆x)∆x exists (i.e., Riemann

integrable using left sums) and that the limiting values in their
definitions are the same.

(i) The function f is bounded on [a, b] since it is continuous, so it
is in fact uniformly continuous on [a, b]. Use the definition of
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uniform continuity to find an n such that |x − y| < 1
n
implies

|f(x)− f(y)| < ε
b−a

.

(ii) Prove that it suffices to show that

lim
n→∞

∣∣∣∣∣
n∑

k=1

(
f(a+

k

n
∆x)− f(a+

k − 1

n
∆x)

)
∆x

∣∣∣∣∣ = 0.

(iii) Using (i) and (ii), complete the proof. (Hint: triangle inequal-
ity.)

(c) Prove that Riemann integrable functions are also (Darboux) inte-
grable and that their limiting values are the same.

(i) Let f be Riemann integrable. Consider g := f+|f |
2

and h :=
f−|f |

2
. Prove that f = g+h where g is Riemann integrable and

nondecreasing, and h is Riemann integrable and nonincreasing.

(ii) We learn in our integral rules section that
∫ b

a
f =

∫ b

a
g +

∫ b

a
h.

Prove using the sequential integrability criterion that the Dar-
boux integral for g exists and agrees with the Riemann integral
using right sums. Also prove that the Darboux integral for h
exists and agrees with the Riemann integral using left sums.

(iii) Complete the proof.

(d) Suppose f : [a, b] → R is continuous and
∫ x

a
f = 0 for all rational

x ∈ [a, b]. Show that f(x) = 0 for all x ∈ [a, b].


