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What is a real number?

1 History of mathematics tells us irrational numbers were known about for a long time.

https://brilliant.org/wiki/history-of-irrational-numbers/ Rumor has it Ancient Greeks had a
testy relationship with them

2 https://mathshistory.st-andrews.ac.uk/Extras/Cauchy_Calculus/ In response to
critiques of mathematics’ lack of rigor, Augustin Cauchy develops the limit in early
19th century in order to give the modern definition of the derivative

3 https://en.wikipedia.org/wiki/Construction_of_the_real_numbers Modern
constructions of R don’t appear until late 19th century, one of which uses the limit in
the guise of “Cauchy sequences" (Georg Cantor played a hand in this)

John M. Weeks Advanced Calculus I 2023-08-02 1 / 188

https://brilliant.org/wiki/history-of-irrational-numbers/
https://mathshistory.st-andrews.ac.uk/Extras/Cauchy_Calculus/
https://en.wikipedia.org/wiki/Construction_of_the_real_numbers


What is a real number?

1 History of mathematics tells us irrational numbers were known about for a long time.
https://brilliant.org/wiki/history-of-irrational-numbers/ Rumor has it Ancient Greeks had a
testy relationship with them

2 https://mathshistory.st-andrews.ac.uk/Extras/Cauchy_Calculus/ In response to
critiques of mathematics’ lack of rigor, Augustin Cauchy develops the limit in early
19th century in order to give the modern definition of the derivative

3 https://en.wikipedia.org/wiki/Construction_of_the_real_numbers Modern
constructions of R don’t appear until late 19th century, one of which uses the limit in
the guise of “Cauchy sequences" (Georg Cantor played a hand in this)

John M. Weeks Advanced Calculus I 2023-08-02 1 / 188

https://brilliant.org/wiki/history-of-irrational-numbers/
https://mathshistory.st-andrews.ac.uk/Extras/Cauchy_Calculus/
https://en.wikipedia.org/wiki/Construction_of_the_real_numbers


What is a real number?

1 History of mathematics tells us irrational numbers were known about for a long time.
https://brilliant.org/wiki/history-of-irrational-numbers/ Rumor has it Ancient Greeks had a
testy relationship with them

2 https://mathshistory.st-andrews.ac.uk/Extras/Cauchy_Calculus/ In response to
critiques of mathematics’ lack of rigor, Augustin Cauchy develops the limit in early
19th century in order to give the modern definition of the derivative

3 https://en.wikipedia.org/wiki/Construction_of_the_real_numbers Modern
constructions of R don’t appear until late 19th century, one of which uses the limit in
the guise of “Cauchy sequences" (Georg Cantor played a hand in this)

John M. Weeks Advanced Calculus I 2023-08-02 1 / 188

https://brilliant.org/wiki/history-of-irrational-numbers/
https://mathshistory.st-andrews.ac.uk/Extras/Cauchy_Calculus/
https://en.wikipedia.org/wiki/Construction_of_the_real_numbers


What is a real number?

1 History of mathematics tells us irrational numbers were known about for a long time.
https://brilliant.org/wiki/history-of-irrational-numbers/ Rumor has it Ancient Greeks had a
testy relationship with them

2 https://mathshistory.st-andrews.ac.uk/Extras/Cauchy_Calculus/ In response to
critiques of mathematics’ lack of rigor, Augustin Cauchy develops the limit in early
19th century in order to give the modern definition of the derivative

3 https://en.wikipedia.org/wiki/Construction_of_the_real_numbers Modern
constructions of R don’t appear until late 19th century, one of which uses the limit in
the guise of “Cauchy sequences" (Georg Cantor played a hand in this)

John M. Weeks Advanced Calculus I 2023-08-02 1 / 188

https://brilliant.org/wiki/history-of-irrational-numbers/
https://mathshistory.st-andrews.ac.uk/Extras/Cauchy_Calculus/
https://en.wikipedia.org/wiki/Construction_of_the_real_numbers


What is a real number?

1 History of mathematics tells us irrational numbers were known about for a long time.
https://brilliant.org/wiki/history-of-irrational-numbers/ Rumor has it Ancient Greeks had a
testy relationship with them

2 https://mathshistory.st-andrews.ac.uk/Extras/Cauchy_Calculus/ In response to
critiques of mathematics’ lack of rigor, Augustin Cauchy develops the limit in early
19th century in order to give the modern definition of the derivative

3 https://en.wikipedia.org/wiki/Construction_of_the_real_numbers Modern
constructions of R don’t appear until late 19th century, one of which uses the limit in
the guise of “Cauchy sequences" (Georg Cantor played a hand in this)√

2 := (1, 1.4, 1.41, 1.414, . . . )

John M. Weeks Advanced Calculus I 2023-08-02 1 / 188

https://brilliant.org/wiki/history-of-irrational-numbers/
https://mathshistory.st-andrews.ac.uk/Extras/Cauchy_Calculus/
https://en.wikipedia.org/wiki/Construction_of_the_real_numbers


Our class

1 Some proof reminders from MATH 300 (today)

2 Real numbers - what do they do? Do they do things? Let’s find out
3 Sequences - how do sequences “converge"? Plus series
4 Functions on R - continuous and uniform continuous
5 Differentiation - all those calculus theorems you took for granted
6 Integration - fundamental theorem of calculus

Proof and rigor
Ideas and creativity
Beauty and overall cool stuff
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Syllabus stuff

Take it away John

John M. Weeks Advanced Calculus I 2023-08-02 3 / 188



Review: Sets

A set A is a collection of objects. There are a few things that bar this from being a full
definition, but we won’t run into those here.

We can intersect A,B to get the elements in A
and B, A ∩ B. We can union A,B to get the elements in A or B, A ∪ B. Given a particular
universal set, we can take Ac to get the set of elements not in A.

(a, b) ∪ (c, d) =


(a, d) a < c < b < d
(a, b) a < c < d < b
...

R \Q = the irrational numbers

|(a, b)| =∞ (but we can be more specific...)⋃
n∈N(−n, n) = R⋂

n∈N(−
1
n ,

1
n ) = {0}
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Proving with Sets

If we want to show A ⊂ B (which I use to mean “is a subset of", not “is a proper subset
of"),

we start by letting x ∈ A, then use the tools we have to show x ∈ B.
In order to show A = B, we often proceed by double inclusion: we show A ⊂ B and
B ⊂ A.

DeMorgan’s Laws are useful to us, and we will prove the two-set version of them in our
homework: ⋂

j

Aj

 =
⋃

j

Ac
j

⋃
j

Aj

 =
⋂

j

Ac
j

We also have distributive laws: B ∩ (
⋃

i Ai)
c =

⋃
i(B ∩ Ai), and B ∪ (

⋂
i Ai)

c =
⋂

i(B ∪ Ai).
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Review: Functions

A rule f : A→ B is a subset of A× B. A function is a rule such that, for all elements
(a1, b1), (a2, b2) in the rule, a1 = a2 ⇒ b1 = b2.

(Note that sometimes we will ask if a
function is well-defined - we mean to confirm that selecting one element in the domain
doesn’t send us to two elements in the range. We will also say “mapping" instead of
function sometimes.)

For S ⊂ A, we define f (S) := {f (x) ∈ B : x ∈ S}. For T ⊂ B, we define
f−1(T ) := {x ∈ A : f (x) ∈ T}. Note that f−1(T ) can be empty - we would write
f−1(T ) = ∅. (If T itself is nonempty, this can only happen if T is in the codomain of the
function, but outside of the range.)

A function can be injective (one-to-one), which means that for all x ∈ B,
f−1(x) := f−1({x}) has at most one element. A function can be surjective (onto), which
means that for all x ∈ B, f−1(x) has at least one element. A function is bijective if it is
injective and surjective.
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Proving with Functions

We can ask several things about functions. We can ask whether f (x) ≤ a, f (x) ≥ a,
f (x) = a, what a domain/codomain needs to be for a function to be injective/surjective,
what results from a composition f ◦ g of functions, constructing an inverse function f−1,
etc.

This isn’t even to mention how functions themselves make sets like f (S), f−1(T )!

Sometimes, to show that f (x) = a, we might elect to show f (x) ≤ a and f (x) ≥ a. We
might also show that |f (x)−a| < ε for all ε > 0. (Although this may seem complicated now,
this strategy will be indispensable for us in this course.) If we are convinced “f (x) =∞",
we might instead claim f (x) ≥ M for all natural numbers M. (Another common strategy.)

John M. Weeks Advanced Calculus I 2023-08-02 7 / 188



Proving with Functions

We can ask several things about functions. We can ask whether f (x) ≤ a, f (x) ≥ a,
f (x) = a, what a domain/codomain needs to be for a function to be injective/surjective,
what results from a composition f ◦ g of functions, constructing an inverse function f−1,
etc. This isn’t even to mention how functions themselves make sets like f (S), f−1(T )!

Sometimes, to show that f (x) = a, we might elect to show f (x) ≤ a and f (x) ≥ a. We
might also show that |f (x)−a| < ε for all ε > 0. (Although this may seem complicated now,
this strategy will be indispensable for us in this course.) If we are convinced “f (x) =∞",
we might instead claim f (x) ≥ M for all natural numbers M. (Another common strategy.)

John M. Weeks Advanced Calculus I 2023-08-02 7 / 188



Proving with Functions

We can ask several things about functions. We can ask whether f (x) ≤ a, f (x) ≥ a,
f (x) = a, what a domain/codomain needs to be for a function to be injective/surjective,
what results from a composition f ◦ g of functions, constructing an inverse function f−1,
etc. This isn’t even to mention how functions themselves make sets like f (S), f−1(T )!

Sometimes, to show that f (x) = a, we might elect to show f (x) ≤ a and f (x) ≥ a.

We
might also show that |f (x)−a| < ε for all ε > 0. (Although this may seem complicated now,
this strategy will be indispensable for us in this course.) If we are convinced “f (x) =∞",
we might instead claim f (x) ≥ M for all natural numbers M. (Another common strategy.)

John M. Weeks Advanced Calculus I 2023-08-02 7 / 188



Proving with Functions

We can ask several things about functions. We can ask whether f (x) ≤ a, f (x) ≥ a,
f (x) = a, what a domain/codomain needs to be for a function to be injective/surjective,
what results from a composition f ◦ g of functions, constructing an inverse function f−1,
etc. This isn’t even to mention how functions themselves make sets like f (S), f−1(T )!

Sometimes, to show that f (x) = a, we might elect to show f (x) ≤ a and f (x) ≥ a. We
might also show that |f (x)−a| < ε for all ε > 0. (Although this may seem complicated now,
this strategy will be indispensable for us in this course.)

If we are convinced “f (x) =∞",
we might instead claim f (x) ≥ M for all natural numbers M. (Another common strategy.)

John M. Weeks Advanced Calculus I 2023-08-02 7 / 188



Proving with Functions

We can ask several things about functions. We can ask whether f (x) ≤ a, f (x) ≥ a,
f (x) = a, what a domain/codomain needs to be for a function to be injective/surjective,
what results from a composition f ◦ g of functions, constructing an inverse function f−1,
etc. This isn’t even to mention how functions themselves make sets like f (S), f−1(T )!

Sometimes, to show that f (x) = a, we might elect to show f (x) ≤ a and f (x) ≥ a. We
might also show that |f (x)−a| < ε for all ε > 0. (Although this may seem complicated now,
this strategy will be indispensable for us in this course.) If we are convinced “f (x) =∞",
we might instead claim f (x) ≥ M for all natural numbers M. (Another common strategy.)

John M. Weeks Advanced Calculus I 2023-08-02 7 / 188



Proof Overview

Definition

A proof is a convincing argument.

In mathematics, an argument is considered convincing
if it can be traced back to accepted truths in an appropriate axiomatic system.
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Proof Overview

Definition

A proof is a convincing argument. In mathematics, an argument is considered convincing
if it can be traced back to accepted truths in an appropriate axiomatic system.

Theorem

If n is odd, n2 is odd.

An Unconvincing Proof.

12 = 1. 32 = 9. Even if you keep going through all the odd numbers, it’s still odd. ■
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arbitrary k ∈ Z. Then n2 = (2k + 1)2 = 4k2 + 4k + 1. So n2 = 2(2k2 + 2k) + 1, which is
odd by definition. ■

This is the proof of a conditional statement (P ⇒ Q) - in order to prove the consequent
latter half, you may assume the precedent former half. Because we have proven this
theorem, we know the contrapositive (¬Q ⇒ ¬P) is also true:

Theorem (Converse)

If n2 is not odd, then n is not odd.
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Theorem

If n is odd, n2 is odd.

A Convincing Proof.

By definition a number n is odd if n = 2k + 1 for some k ∈ Z. So let n = 2k + 1 for an
arbitrary k ∈ Z. Then n2 = (2k + 1)2 = 4k2 + 4k + 1. So n2 = 2(2k2 + 2k) + 1, which is
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latter half, you may assume the precedent former half. Because we have proven this
theorem, we know the contrapositive (¬Q ⇒ ¬P) is also true:

Theorem (Contrapositive)
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John M. Weeks Advanced Calculus I 2023-08-02 9 / 188



Theorem:
√

2 is irrational.
Proof:

Assume by way of contradiction
(BWOC) that

√
2 is rational.

Then by definition of rational,
√

2 = p
q ,

where p and q may be assumed to have no
common factors.
So p = q

√
2. Squaring both sides, we get

p2 = 2q2.
So by definition, p2 is even. By our theorem
on the previous slide, then, p is even.
Since p = 2k for some k ∈ Z, we substitute
to get (2k)2 = 2q2. Then
4k2 = 2q2 ⇒ 2k2 = q2.
By definition once again, q2 is even, and by
our previous theorem, q is even.

Proof Idea:
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the opposite of the theorem’s statement.
Our goal is to arrive at an absurd statement.
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factors between p and q, we could divide
them away.
We begin to play with the equation we
found. Can we write the equation in a form
we’ve seen before, or maybe in a creative
way we could utilize?
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where p and q may be assumed to have no
common factors.
So p = q

√
2. Squaring both sides, we get

p2 = 2q2.
So by definition, p2 is even. By our
theorem on the previous slide, then, p is
even.

Since p = 2k for some k ∈ Z, we substitute
to get (2k)2 = 2q2. Then
4k2 = 2q2 ⇒ 2k2 = q2.
By definition once again, q2 is even, and by
our previous theorem, q is even.

Proof Idea: We are setting up a proof by
contradiction, which begins by assuming
the opposite of the theorem’s statement.
Our goal is to arrive at an absurd statement.
We start by using the definition of rational to
our advantage. If there were any common
factors between p and q, we could divide
them away.
We begin to play with the equation we
found. Can we write the equation in a form
we’ve seen before, or maybe in a creative
way we could utilize?
We apply our definitions in the hope of
connecting back to something we know. We
discover that p is even.
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Theorem:
√
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Proof: Assume by way of contradiction
(BWOC) that

√
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to get (2k)2 = 2q2. Then
4k2 = 2q2 ⇒ 2k2 = q2.
By definition once again, q2 is even, and by
our previous theorem, q is even.

Proof Idea:
We now ask a question: how does this help
us? We think about what this definition
means: we know that p has a factor of 2.
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our previous theorem, q is even.

Proof Idea:
We now ask a question: how does this help
us? We think about what this definition
means: we know that p has a factor of 2.

What if we could also prove that q was
even? Then both p and q have a factor of 2,
which means that we can divide away the
2’s. But this would be impossible: the 2’s
shouldn’t have been there to begin with,
since p

q is simplified.
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√
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q ,

where p and q may be assumed to have no
common factors.
So p = q

√
2. Squaring both sides, we get

p2 = 2q2.
So by definition, p2 is even. By our theorem
on the previous slide, then, p is even.
Since p = 2k for some k ∈ Z, we
substitute to get (2k)2 = 2q2. Then
4k2 = 2q2 ⇒ 2k2 = q2.

By definition once again, q2 is even, and by
our previous theorem, q is even.

Proof Idea:
We now ask a question: how does this help
us? We think about what this definition
means: we know that p has a factor of 2.

What if we could also prove that q was
even? Then both p and q have a factor of 2,
which means that we can divide away the
2’s. But this would be impossible: the 2’s
shouldn’t have been there to begin with,
since p

q is simplified.

We don’t have much to work with except the
equation p2 = 2q2, so let’s try playing with it
some more, with the new knowledge that p
is even.
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on the previous slide, then, p is even.
Since p = 2k for some k ∈ Z, we substitute
to get (2k)2 = 2q2. Then
4k2 = 2q2 ⇒ 2k2 = q2.
By definition once again, q2 is even, and
by our previous theorem, q is even.

Proof Idea:
At this point we can say we went in the right
direction: with just a few more steps we
proved that q is even. It is hard to know
when a contradiction proof is over, but once
we clearly prove “p and q are both even"
and explain why this is impossible, we will
be done.
—

John M. Weeks Advanced Calculus I 2023-08-02 10 / 188



Theorem:
√

2 is irrational.
Proof: Assume by way of contradiction
(BWOC) that

√
2 is rational.

Then by definition of rational,
√

2 = p
q ,

where p and q may be assumed to have no
common factors.
So p = q

√
2. Squaring both sides, we get

p2 = 2q2.
So by definition, p2 is even. By our theorem
on the previous slide, then, p is even.
Since p = 2k for some k ∈ Z, we substitute
to get (2k)2 = 2q2. Then
4k2 = 2q2 ⇒ 2k2 = q2.
By definition once again, q2 is even, and by
our previous theorem, q is even.

Proof Idea:
At this point we can say we went in the right
direction: with just a few more steps we
proved that q is even. It is hard to know
when a contradiction proof is over, but once
we clearly prove “p and q are both even"
and explain why this is impossible, we will
be done.
—

But it is impossible for both p and q to
be even (i.e., have a factor of 2) since p
and q were assumed to have no
common factors.
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Proof Idea:
At this point we can say we went in the right
direction: with just a few more steps we
proved that q is even. It is hard to know
when a contradiction proof is over, but once
we clearly prove “p and q are both even"
and explain why this is impossible, we will
be done.
—

But it is impossible for both p and q to be
even (i.e., have a factor of 2) since p and q
were assumed to have no common factors.
Our only assumption was that

√
2 was

rational, so we must conclude that
√

2 is
irrational.
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Success in Math 409

Tip

The people who succeed in this course are those who create their own proof ideas and
are able to translate their proof ideas into proofs. Memorizing proofs and proof ideas is
useful, but it is not enough.

Our homeworks and exams will ask for conceptual understanding of the ideas we discuss
as well as proofs. Make sure you know the definitions and theorems presented in this
course, what they mean, and the main proof ideas behind them. Do the same for the
definitions, theorems, and proofs from your MATH 300 course.
After this: practice! Some say mathematics is a great big puzzle. It takes a while to put all
the pieces together. Use this as an opportunity to make connections with all the math we
have done up to this point.
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as well as proofs. Make sure you know the definitions and theorems presented in this
course, what they mean, and the main proof ideas behind them. Do the same for the
definitions, theorems, and proofs from your MATH 300 course.
After this: practice! Some say mathematics is a great big puzzle. It takes a while to put all
the pieces together. Use this as an opportunity to make connections with all the math we
have done up to this point.
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Here’s a big one for success in this course:

Ask questions!

Q1: Can we use a similar argument to our previous proof to show
√

3,
√

5, etc. are
irrational?
Q2: What happens when you apply this argument to

√
4? Certainly

√
4 is rational, so

what’s so different about 4?
Q3: Is there a different way to prove

√
2 is irrational using the concepts of supremum or

infimum? (We will learn about these very soon. The answer is yes.)
Your homework questions may be asking you to answer questions like these as well.
I am always happy to entertain a question you have, as is your help session tutor. The
best way to reach me is via email: jweeks03@tamu.edu. More information about this
course can be found in the syllabus.
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Number Systems

We define the natural numbers N to be the numbers 1, 2, 3, . . . . Sometimes we may
use the symbol N0 to denote the natural numbers including 0.

The natural numbers are closed under addition and multiplication and also have an
order relation ≤. The natural numbers are not closed under subtraction or division.

We define the integers Z to be the numbers . . . ,−2,−1, 0, 1, 2, . . . .

The integers are closed under addition, multiplication, and subtraction - but not division.

We define the rational numbers Q to be the numbers of the form m
n for m ∈ Z, n ∈ N.

From our previous slide, we know there are irrational numbers as well. How many
more are there?
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Cardinality

Definition

We say that a set A is infinite if it is not finite. An infinite set has cardinality (roughly,
“counting size") ℵ0 if it has the same cardinality as the natural numbers.

We say two sets A and B have the same cardinality if there exists a bijection f : A→ B
between the two sets. For example, {1, 2, 3} and {4, 5, 6} have the same cardinality.

Question

How does the cardinality of Q compare to the cardinality of N?
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Theorem: |Q| = |N|
Proof:

We will define a particular function
f : N→ Q and prove that this function is a
bijection.

Proof Idea: It is a little difficult to think about
comparing N and Q. Q clearly contains N
and seems to have a LOT more elements!
However, we are going to try something
unintuitive and prove that their “counting
size" is the same.
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comparing N and Q. Q clearly contains N
and seems to have a LOT more elements!
However, we are going to try something
unintuitive and prove that their “counting
size" is the same.

Let’s begin by stating what we want to do.
With something this tricky, it’s good to let
the audience know what’s up. Note that the
claim follows from our goal by definition.
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and seems to have a LOT more elements!
However, we are going to try something
unintuitive and prove that their “counting
size" is the same.

Let’s begin by stating what we want to do.
With something this tricky, it’s good to let
the audience know what’s up. Note that the
claim follows from our goal by definition.

A LOT of functions we can think of don’t
work: f (n) = n is injective but not surjective.
The trick is thinking about how to count all
numbers of the form m

n in a row.
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Here’s one way to try:

n 1 2 3 4 · · ·

1 1
1

2
1

3
1

4
1 · · ·

2 1
2

2
2

3
2

4
2 · · ·

3 1
3

2
3

3
3

4
3 · · ·

4 1
4

2
4

3
4

4
4 · · ·
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Theorem: |Q| = |N|
Proof: We will define a particular function
f : N→ Q and prove that this function is a
bijection.

Given the table above, let a function h
assign each natural number sequentially
in the order suggested by the arrows.
(For example, h(1) = 1

1 , h(2) = 2
1 ,

h(3) = 1
2 , and so on.)

This maps N onto the positive rational
numbers. Define f : N→ Q to be
f (k) = (−1)k+1 · h(

⌈ k
2

⌉
); then by

construction this function maps onto Q.

Proof Idea: We want to be very clear about
how we are assigning the values of this
function. It’s okay and even recommended
to provide tables, graphs, and figures where
useful.
—
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a way we can make this change?
We introduce the ceiling function ⌈a⌉,
which rounds a up to the nearest whole
number. Notice that

⌈ k
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⌉
will output numbers

in the following order: 1, 1, 2, 2, 3, 3,. . . .
—

John M. Weeks Advanced Calculus I 2023-08-02 17 / 188



Theorem: |Q| = |N|
Proof: We will define a particular function
f : N→ Q and prove that this function is a
bijection.

Given the table above, let a function h
assign each natural number sequentially in
the order suggested by the arrows. (For
example, h(1) = 1

1 , h(2) = 2
1 , h(3) = 1

2 , and
so on.)
This maps N onto the positive rational
numbers. Define f : N→ Q to be
f (k) = (−1)k+1 · h(

⌈ k
2

⌉
); then by

construction this function maps onto Q.

Proof Idea: We want to be very clear about
how we are assigning the values of this
function. It’s okay and even recommended
to provide tables, graphs, and figures where
useful.
However, we have not yet mapped any
numbers to the negative rationals. What is
a way we can make this change?
We introduce the ceiling function ⌈a⌉,
which rounds a up to the nearest whole
number. Notice that

⌈ k
2

⌉
will output numbers

in the following order: 1, 1, 2, 2, 3, 3,. . . .
The (−1)k+1 factor will output numbers like
this: 1, -1, 1, -1, . . . . So the product of
these two alternates between positive and
negative numbers.
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⌈ k
2
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); then by

construction this function maps onto Q.

Proof Idea:
There’s one more issue though: we
promised a bijection and were only able to
give a surjection. (Note f (1) = f (5), for
example.)
—
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Theorem: |Q| = |N|
Proof: We will define a particular function
f : N→ Q and prove that this function is a
surjection.

Given the table above, let a function h
assign each natural number sequentially in
the order suggested by the arrows. (For
example, h(1) = 1

1 , h(2) = 2
1 , h(3) = 1

2 , and
so on.)
This maps N onto the positive rational
numbers. Define f : N→ Q to be
f (k) = (−1)k+1 · h(

⌈ k
2

⌉
); then by

construction this function maps onto Q.

Proof Idea:
There’s one more issue though: we
promised a bijection and were only able to
give a surjection. (Note f (1) = f (5), for
example.)
The reason we can be okay with this is due
to the Schröder-Bernstein Theorem: if
there is an injection and a surjection
between two sets, then there is a bijection
between them too.
—

Since f (n)→ n is an injection from N to
Q, Schröder-Bernstein completes the
proof.
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Theorem: |N| < |R|
Proof:

Assume BWOC that f is a bijection
between N and [0, 1).
Write down the values of f in a table like
this:

f (1) 0 . a1
1 a1

2 a1
3 . . .

f (2) 0 . a2
1 a2

2 a2
3 . . .

f (3) 0 . a3
1 a3

2 a3
3 . . .

...
... .

...
...

...
. . .

It suffices to show that there is a real
number that is not present in this table of
values.
Create a number k = 0.k1k2k3 . . . such that
ki = 5 or 6, whichever ai

i is not, for all i ∈ N.
Then for any n, k ̸= f (n) since it is different
from f (n) in the nth decimal place.

Proof Idea: For this proof we can use the
notion of R that we normally work with: the
collection of “infinite decimal expansions".

—
But since k ∈ [0, 1) is a real number, this
means k is not in the image of f . So f is not
a bijection, yielding our contradiction.
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A Few More Theorems

Definition

We say a set X with finite cardinality or with cardinality ℵ0 is countable. If X is not
countable, we say it is uncountable.

Theorem

Any subset of a countable set is countable.

Theorem

Any union of countably many countable sets (Ai)i∈I is countable. (Here I is an indexing
set: {1, . . . ,N} or I = N.)

Proof.

By definition of countable, for each Ai there is a surjective function fi : N→ Ai . (Why is fi
not necessarily bijective?) There are countably many sets in I, so there exists a surjective
function g : N→ I. Create a table: (Can you finish the proof?)

i\k 1 2 3 4 · · ·

1 fg(1)(1) fg(1)(2) fg(1)(3) fg(1)(4) · · ·
2 fg(2)(1) fg(2)(2) fg(2)(3) fg(2)(4) · · ·

3 fg(3)(1) fg(3)(2)
. . .

... · · ·
4 fg(4)(1) fg(4)(4) · · · fg(i)(k) · · ·

■
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Theorem

[0, 1) is uncountable.

Proof.

First, let n ∈ Z be arbitrary. Then f (x) = x + n is a bijection between [0, 1) and [n, n + 1).
So all sets of the form [n, n + 1) have the same cardinality. Note that

R =
∞⋃

n=−∞
[n, n + 1).

Can you finish the proof? ■
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Axioms of R

Definition

An axiom is a basic accepted truth. It is taken as a fundamental aspect of the space we
are working in.

The set R satisfies what are known as the field axioms, which roughly says that R plays
nicely with addition and multiplication.
A1-A4 deal with addition, M1-M4 deal with multiplication, and AM1 deals with how the two
operations interact with each other.

AM1 For any a, b, c ∈ R the identity (a + b)c = ac + bc is true.
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A1 For any a, b ∈ R, a + b ∈ R, and
a + b = b + a.
A2 For any a, b, c ∈ R, the identity

(a + b) + c = a + (b + c)

is true.
A3 There is a unique number 0 ∈ R so that,
for all a ∈ R,

a + 0 = 0 + a = a.

A4 For any number a ∈ R there is a
corresponding number denoted by −a with
the property that

a + (−a) = 0.

M1 For any a, b ∈ R there is a number
ab ∈ R and ab = ba.
M2 For any a, b, c ∈ R the identity

(ab)c = a(bc)

is true.
M3 There is a unique number 1 ∈ R so that

a1 = 1a = a

for all a ∈ R.
M4 For any number a ∈ R, a ̸= 0, there is a
corresponding number a−1 with the
property that

aa−1 = 1.
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Order of R
R also satisfies some additional axioms that make it into an ordered field. Whereas a set
satisfying A1-A4, M1-M4, and AM1 can be called a field, any field satisfying O1-O4
below can be called ordered:
O1 For any a, b ∈ R, exactly one of the
statements a = b, a < b, or b < a is true.
O2 For any a, b, c ∈ R, if a < b and b < c,
then a < c.

O3 For any a, b ∈ R, if a < b, then
a + c < b + c for any c ∈ R.
O4 For any a, b ∈ R, if a < b then ac < bc
for any c ∈ R. . . .

Exercise: prove the arithmetic-geometric mean inequality using only the axioms we have
discussed so far. √

ab ≤ a + b
2

where a, b > 0.
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Theorem:
√

ab ≤ a+b
2 for a, b > 0.

Proof:

We begin by showing x2 ≥ 0 for any
x ∈ R.
By O1, either x = 0, x > 0, or x < 0. If
x = 0, then 02 = 0 (why?), so x2 = 0.
If x > 0, then by O4, n · n > n · 0 M4

= 0. So
n2 > 0.
If x < 0, then by O3 x − x < 0− x , so
0 < −x by A4. By O4, −x · x < 0.
By O3 again, x · x − x · x < x · x + 0. So by
A4 again, 0 < x2.
Hence (a− b)2 ≥ 0. By applying AM1 twice,
we get a2 − 2ab + b2 ≥ 0.
We can add 4ab to both sides by O3 to get
4ab ≤ a2 + 2ab + b2. Again, by applying
AM1 twice, we have 4ab ≤ (a + b)2.
To be continued...

Proof Idea: Let’s start by working
backwards. What’s the most basic thing we
need to work with here?
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Proof Idea: Let’s start by working
backwards. What’s the most basic thing we
need to work with here?

We can start by multiplying by 2 and
squaring both sides to get 4ab ≤ (a + b)2.
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Proof Idea: Let’s start by working
backwards. What’s the most basic thing we
need to work with here?

We can start by multiplying by 2 and
squaring both sides to get 4ab ≤ (a + b)2.

Then after multiplying and combining like
terms we get 2ab ≤ a2 + b2.
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need to work with here?

We can start by multiplying by 2 and
squaring both sides to get 4ab ≤ (a + b)2.

Then after multiplying and combining like
terms we get 2ab ≤ a2 + b2.

Finally, subtracting 2ab and factoring, we
get 0 ≤ (a− b)2.
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Proof Idea: Let’s start by working
backwards. What’s the most basic thing we
need to work with here?

We can start by multiplying by 2 and
squaring both sides to get 4ab ≤ (a + b)2.

Then after multiplying and combining like
terms we get 2ab ≤ a2 + b2.

Finally, subtracting 2ab and factoring, we
get 0 ≤ (a− b)2.

It seems easiest to just prove the square of
any number is non-negative.
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To be continued...

Proof Idea:
As simple as the idea seems, just the
beginning of the proof illuminates that
working from axioms can be a little tedious.
Everything we say comes from an axiom -
we can’t use the things we have taken for
granted before here.

John M. Weeks Advanced Calculus I 2023-08-02 24 / 188



Theorem:
√

ab ≤ a+b
2 for a, b > 0.

Proof: We begin by showing x2 ≥ 0 for any
x ∈ R.
By O1, either x = 0, x > 0, or x < 0. If
x = 0, then 02 = 0 (why?), so x2 = 0.
If x > 0, then by O4, n · n > n · 0 M4

= 0. So
n2 > 0.

If x < 0, then by O3 x − x < 0− x , so
0 < −x by A4. By O4, −x · x < 0.
By O3 again, x · x − x · x < x · x + 0. So by
A4 again, 0 < x2.
Hence (a− b)2 ≥ 0. By applying AM1 twice,
we get a2 − 2ab + b2 ≥ 0.
We can add 4ab to both sides by O3 to get
4ab ≤ a2 + 2ab + b2. Again, by applying
AM1 twice, we have 4ab ≤ (a + b)2.
To be continued...

Proof Idea:
As simple as the idea seems, just the
beginning of the proof illuminates that
working from axioms can be a little tedious.
Everything we say comes from an axiom -
we can’t use the things we have taken for
granted before here.
This is a proof by cases, where we begin
with a set of possibilities and then prove the
statement starting from each possibility
one-at-a-time.
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we can’t use the things we have taken for
granted before here.
This is a proof by cases, where we begin
with a set of possibilities and then prove the
statement starting from each possibility
one-at-a-time.
The trickiest thing seems to be x < 0, since
our O4 trick doesn’t work with negative
numbers - we have to apply O3 first.
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0 < −x by A4. By O4, −x · x < 0.
By O3 again, x · x − x · x < x · x + 0. So by
A4 again, 0 < x2.
Hence (a− b)2 ≥ 0. By applying AM1
twice, we get a2 − 2ab + b2 ≥ 0.

We can add 4ab to both sides by O3 to get
4ab ≤ a2 + 2ab + b2. Again, by applying
AM1 twice, we have 4ab ≤ (a + b)2.
To be continued...

Proof Idea:
We can now move on, since we can
substitute any real number in for x , like
a− b. (Can you explain each instance of
AM1?)

John M. Weeks Advanced Calculus I 2023-08-02 24 / 188



Theorem:
√

ab ≤ a+b
2 for a, b > 0.

Proof: We begin by showing x2 ≥ 0 for any
x ∈ R.
By O1, either x = 0, x > 0, or x < 0. If
x = 0, then 02 = 0 (why?), so x2 = 0.
If x > 0, then by O4, n · n > n · 0 M4

= 0. So
n2 > 0.
If x < 0, then by O3 x − x < 0− x , so
0 < −x by A4. By O4, −x · x < 0.
By O3 again, x · x − x · x < x · x + 0. So by
A4 again, 0 < x2.
Hence (a− b)2 ≥ 0. By applying AM1 twice,
we get a2 − 2ab + b2 ≥ 0.
We can add 4ab to both sides by O3 to get
4ab ≤ a2 + 2ab + b2. Again, by applying
AM1 twice, we have 4ab ≤ (a + b)2.

To be continued...

Proof Idea:
We can now move on, since we can
substitute any real number in for x , like
a− b. (Can you explain each instance of
AM1?)

Let’s take our backwards work from before
and move forwards with it now. When we
were combining like terms, we eventually
got to 4ab ≤ a2 + 2ab + b2, so let’s add 4ab
to both sides.
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Proof Idea:
We can now move on, since we can
substitute any real number in for x , like
a− b. (Can you explain each instance of
AM1?)

Let’s take our backwards work from before
and move forwards with it now. When we
were combining like terms, we eventually
got to 4ab ≤ a2 + 2ab + b2, so let’s add 4ab
to both sides.

The only thing left is to take square roots of
both sides then apply O4... but we haven’t
proven that taking square roots preserves
the order yet. This will be part of a
homework assignment.
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Bounds, Max, and Min

The closed interval [a, b] := {x ∈ R : a ≤ x ≤ b} has a maximum b and a minimum a.
The open interval (a, b) := {x ∈ R : a < x < b} has neither a maximum nor a minimum.
However, both sets are considered bounded since they have both upper and lower
bounds:

Definition

Let E ⊂ R. M is an upper bound for E if x ≤ M for all x ∈ E . The number m is a lower
bound for E if x ≥ m for all x ∈ E .

Definition

Let E ⊂ R. Then M is a maximum of E if M ∈ E and M is an upper bound for E . Also,
m is a minimum of E if m ∈ E and m is a lower bound for E .

Question: Is N bounded in R? No; it has a lower bound but no upper bound.
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Sup, Inf, and Completeness

The closed interval [0, 1] has many lower bounds and upper bounds. The greatest of all
lower bounds for the set is 0, and the least of all upper bounds for the set is 1.

The open interval (0, 1) also has many lower and upper bounds. All the lower bounds for
(0, 1) must be ≤ 0, and 0 is itself a lower bound. So 0 is the infimum of (0, 1). Similarly 1
is the supremum of (0, 1).

Definition

Let E ⊂ R be bounded above and nonempty.
Then if M is the least of all upper bounds for E , we say M is the supremum of E and
write M = sup E .
If m is the greatest of all lower bounds for E , we say m is the infimum of E and write
m = inf E .

If E is unbounded above, we will say sup E =∞. Similarly, if E is unbounded below, we
will say inf E = −∞.
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Question: does every set that is bounded above have a supremum?

Answer: It depends on which ordered field you’re using. This is not true if our ordered
field is Q. This is an axiom if our ordered field is R. We say an ordered field where every
set bounded above has a supremum is complete.

Consider the set E = {x ∈: x2 < 2}.

Then if q ∈ Q is an upper bound, let p := q − q2−2
q+2 .

Note p is the subtraction of rational numbers, so p is rational. Since q is an upper bound,
q2 − 2 > 0 & p < q. Then since p = 2q+2

q+2 , p2 − 2 = 2(q2−2)
(q+2)2 . Since q is an upper bound,

q2 − 2 > 0, so p2 − 2 > 0. So p is also an upper bound. Since p < q, q is not a least
upper bound. Finally, q was an arbitrary upper bound, so we are done.

■

Completeness Axiom of R A nonempty set of real numbers that is bounded above has a
least upper bound.
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Exercise: Let A ⊂ R and B = −A := {−x : x ∈ A}.
What relationships are there between sup A, sup B, inf A, and inf B?

Let sup A =: M be a least upper bound for A.

Then M ≥ a for all a ∈ A.

Hence

−M ≤ −a for all a ∈ A.

So −M is a lower bound for B.
Is it a greatest lower bound? Let N be a lower bound for B.

Then −N is an upper bound for A.

So M ≤ −N.

Hence −M ≥ N, meaning that −M is the greatest lower bound for B.

So − sup A = inf B.
By a symmetric argument (since A = −B), − sup B = inf A.

John M. Weeks Advanced Calculus I 2023-08-02 29 / 188



Exercise: Let A ⊂ R and B = −A := {−x : x ∈ A}.
What relationships are there between sup A, sup B, inf A, and inf B?

Let sup A =: M be a least upper bound for A.

Then M ≥ a for all a ∈ A.

Hence

−M ≤ −a for all a ∈ A.

So −M is a lower bound for B.
Is it a greatest lower bound? Let N be a lower bound for B.

Then −N is an upper bound for A.

So M ≤ −N.

Hence −M ≥ N, meaning that −M is the greatest lower bound for B.

So − sup A = inf B.
By a symmetric argument (since A = −B), − sup B = inf A.

John M. Weeks Advanced Calculus I 2023-08-02 29 / 188



Exercise: Let A ⊂ R and B = −A := {−x : x ∈ A}.
What relationships are there between sup A, sup B, inf A, and inf B?

Let sup A =: M be a least upper bound for A.

Then M ≥ a for all a ∈ A.

Hence −M ≤ −a for all a ∈ A.

So

−M is a lower bound for B.
Is it a greatest lower bound? Let N be a lower bound for B.

Then −N is an upper bound for A.

So M ≤ −N.

Hence −M ≥ N, meaning that −M is the greatest lower bound for B.

So − sup A = inf B.
By a symmetric argument (since A = −B), − sup B = inf A.

John M. Weeks Advanced Calculus I 2023-08-02 29 / 188



Exercise: Let A ⊂ R and B = −A := {−x : x ∈ A}.
What relationships are there between sup A, sup B, inf A, and inf B?

Let sup A =: M be a least upper bound for A.

Then M ≥ a for all a ∈ A.

Hence −M ≤ −a for all a ∈ A.

So −M is a lower bound for B.
Is it a greatest lower bound?

Let N be a lower bound for B.

Then −N is an upper bound for A.

So M ≤ −N.

Hence −M ≥ N, meaning that −M is the greatest lower bound for B.

So − sup A = inf B.
By a symmetric argument (since A = −B), − sup B = inf A.

John M. Weeks Advanced Calculus I 2023-08-02 29 / 188



Exercise: Let A ⊂ R and B = −A := {−x : x ∈ A}.
What relationships are there between sup A, sup B, inf A, and inf B?

Let sup A =: M be a least upper bound for A.

Then M ≥ a for all a ∈ A.

Hence −M ≤ −a for all a ∈ A.

So −M is a lower bound for B.
Is it a greatest lower bound? Let N be a lower bound for B.

Then −N is

an upper bound for A.

So M ≤ −N.

Hence −M ≥ N, meaning that −M is the greatest lower bound for B.

So − sup A = inf B.
By a symmetric argument (since A = −B), − sup B = inf A.

John M. Weeks Advanced Calculus I 2023-08-02 29 / 188



Exercise: Let A ⊂ R and B = −A := {−x : x ∈ A}.
What relationships are there between sup A, sup B, inf A, and inf B?

Let sup A =: M be a least upper bound for A.

Then M ≥ a for all a ∈ A.

Hence −M ≤ −a for all a ∈ A.

So −M is a lower bound for B.
Is it a greatest lower bound? Let N be a lower bound for B.

Then −N is an upper bound for A.

So M

≤ −N.

Hence −M ≥ N, meaning that −M is the greatest lower bound for B.

So − sup A = inf B.
By a symmetric argument (since A = −B), − sup B = inf A.

John M. Weeks Advanced Calculus I 2023-08-02 29 / 188



Exercise: Let A ⊂ R and B = −A := {−x : x ∈ A}.
What relationships are there between sup A, sup B, inf A, and inf B?

Let sup A =: M be a least upper bound for A.

Then M ≥ a for all a ∈ A.

Hence −M ≤ −a for all a ∈ A.

So −M is a lower bound for B.
Is it a greatest lower bound? Let N be a lower bound for B.

Then −N is an upper bound for A.

So M ≤ −N.

Hence −M

≥ N, meaning that −M is the greatest lower bound for B.

So − sup A = inf B.
By a symmetric argument (since A = −B), − sup B = inf A.

John M. Weeks Advanced Calculus I 2023-08-02 29 / 188



Exercise: Let A ⊂ R and B = −A := {−x : x ∈ A}.
What relationships are there between sup A, sup B, inf A, and inf B?

Let sup A =: M be a least upper bound for A.

Then M ≥ a for all a ∈ A.

Hence −M ≤ −a for all a ∈ A.

So −M is a lower bound for B.
Is it a greatest lower bound? Let N be a lower bound for B.

Then −N is an upper bound for A.

So M ≤ −N.

Hence −M ≥ N, meaning that −M is the greatest lower bound for B.

So − sup A = inf B.

By a symmetric argument (since A = −B), − sup B = inf A.

John M. Weeks Advanced Calculus I 2023-08-02 29 / 188



Exercise: Let A ⊂ R and B = −A := {−x : x ∈ A}.
What relationships are there between sup A, sup B, inf A, and inf B?

Let sup A =: M be a least upper bound for A.

Then M ≥ a for all a ∈ A.

Hence −M ≤ −a for all a ∈ A.

So −M is a lower bound for B.
Is it a greatest lower bound? Let N be a lower bound for B.

Then −N is an upper bound for A.

So M ≤ −N.

Hence −M ≥ N, meaning that −M is the greatest lower bound for B.

So − sup A = inf B.
By a symmetric argument (since A = −B), − sup B = inf A.

John M. Weeks Advanced Calculus I 2023-08-02 29 / 188



Archimedean Property

Theorem (Archimedean Property of R)

The set of natural numbers N has no upper bound.

Your professor has gone insane. Certainly this does not require a proof??! In truth the
proof of this theorem requires the completeness axiom we just learned about. It cannot
be proven with the ordered field axioms.
Let us see some consequences of this property before proving it:

Corollary (1)

Given any positive number y, no matter
how large, and any positive number x, no
matter how small, there exists an n ∈ N
such that nx > y.

Corollary (2)

Given any positive number x, no matter
how small, one can find a number n ∈ N
such that 1

n < x.
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Theorem: N has no upper bound.
Proof: Assume BWOC that N does have an
upper bound.

Then N has a least upper bound x ∈ R.
Then n ≤ x for all n ∈ N, but n ≤ x − 1
cannot be true for all natural numbers n.
Let m ∈ N be some natural number such
that m > x − 1.
Then m + 1 > x . Note that m + 1 is also a
natural number.
But x is supN, so x ≥ m + 1. This is a
contradiction.
The only thing we assumed was that N has
an upper bound, so this must not be the
case.

Proof Idea: It is tricky to prove
non-existence directly, so let’s proceed by
contradiction.
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non-existence directly, so let’s proceed by
contradiction.

This is where we use the completeness
axiom. Although we cannot make any
progress with this proof on grounds of
merely having an upper bound, we can still
disprove by showing there is no least upper
bound. If there were any upper bound, then
the infimum of those upper bounds would
be a least upper bound for N. (Prove this!)
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merely having an upper bound, we can still
disprove by showing there is no least upper
bound. If there were any upper bound, then
the infimum of those upper bounds would
be a least upper bound for N. (Prove this!)

We restate what being a supremum means.
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Proof Idea:
Notice that we can pick this number m
because of what we just stated. Since
n ≤ x − 1 is not true for all natural numbers,
there exists m such that the opposite is
true.
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But x is supN, so x ≥ m + 1. This is a
contradiction.

The only thing we assumed was that N has
an upper bound, so this must not be the
case.

Proof Idea:
Notice that we can pick this number m
because of what we just stated. Since
n ≤ x − 1 is not true for all natural numbers,
there exists m such that the opposite is
true.

Why did we add 1 to both sides of our
inequality?
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Why did we add 1 to both sides of our
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It is a kind gesture to remind the audience
what the contradiction leads up to.
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Q is Dense in R
The nature of Q in R is of great interest to us: even though |Q| < |R|, it seems as though it
is evenly spaced throughout R. In fact, it turns out that every interval of R contains
infinitely many points of Q. For Q being so relatively small, this comes pretty rarely; N is
the same size of Q, but there are plenty of intervals of R with no points of N.

Definition

A set E ⊂ R is dense in R if every interval (a, b) contains a point of E .

Exercise: Prove that this definition is equivalent to the following definition for dense:

Definition

A set E ⊂ R is dense in R if every interval (a, b) contains infinitely many points of E .

Keep in mind that equivalence is an “if and only if".
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Theorem

The set Q is dense in the set R.

WRONG Proof!

Let x < y and consider the interval (x , y). Our goal is to find a rational number in
this interval.

Note that the length of the interval (x , y) is y − x . By Corollary (2) of the
Archimedean Property, there exists a natural number n such that 1

n < y − x .Then x <

x + 1
n < y . Hence x + 1

n is a rational number in (x , y). ■

The issue is that x might not be rational! We can adapt this proof, but we will need to be a
bit more careful than just picking x + 1

n .
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Theorem: Q is dense in R.
Proof: Let x < y and consider the
interval (x , y). Our goal is to find a
rational number in this interval.
By the Archimedean Property, there is a
natural number 1

n < y − x . Then
ny > nx + 1.

Let m be the integer such that
m ≤ nx + 1 < m + 1.

This latter inequality says x < m
n after

dividing by n.
By the former inequality,

m ≤ nx + 1 < ny .

Dividing through by n, m
n ≤ x + 1

n < y .

Proof Idea: We begin again just like we did
in our incorrect proof. The idea is that we
got the correct denominator of n. The
length of the interval (x , y) exceeds 1

n , so
intuitively we must be able to find some
m
n -type rational in (x , y).
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in our incorrect proof. The idea is that we
got the correct denominator of n. The
length of the interval (x , y) exceeds 1

n , so
intuitively we must be able to find some
m
n -type rational in (x , y).

Here we use the following fact: for any real
number x , there exists a natural number m
such that m ≤ x < m + 1. We will prove this
in a homework exercise.
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in our incorrect proof. The idea is that we
got the correct denominator of n. The
length of the interval (x , y) exceeds 1

n , so
intuitively we must be able to find some
m
n -type rational in (x , y).

Here we use the following fact: for any real
number x , there exists a natural number m
such that m ≤ x < m + 1. We will prove this
in a homework exercise.

Some algebraic manipulation helps us
complete the proof.
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ε-δ

A common phrase in MATH 409 is “for all epsilon greater than 0, there exists a delta
greater than 0". But what does it mean?

x

y

1 2 3 4 5 6

0.5

1

1.5

This graph denotes the sequence an = 1
n for n ∈ N. We say (an) converges to 0 and write

an → 0. In Calculus II we could prove this using the Monotone Convergence Theorem.
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1

1.5

We can start by understanding ε. ε is a window in our sequence or function values around
a specified value. Here that window is centered around 0.

We say that an = 1
n converges to 0 because for all ε > 0, the sequence eventually resides

in an ε-window around 0. We call this window a neighborhood around 0 of radius ε.

The “for all" quantifier is important! This sequence needs to eventually enter any window
around 0. As our window shortens, the sequence is likely to get farther along before
residing in the neighborhood. https://www.desmos.com/calculator/yfjleatok5
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Theorem: limn→∞
1
n = 0.

Proof: Let ε > 0 be arbitrary.

By the Archimedean Property, there exists
an N ∈ N such that 1

N < ε.
Note that for n > N, 1

n < 1
N , so 1

n < ε as
well.
By definition of a sequential limit, then,
limn→∞

1
n = 0.

Proof Idea: Since our ε-window must be
arbitrarily small in order for the limit
definition to work, we don’t start by setting a
value for ε but let it vary above 0.
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value for ε but let it vary above 0.

Is there something we have learned about
that lets us find a value N such that 1

N is in
our ε-window?
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Is there something we have learned about
that lets us find a value N such that 1

N is in
our ε-window?

This sentence says that future entries in the
sequence will also be in this ε-window. If
future entries past 1

N escaped this window,
this proof would fail and we would need to
try again.
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For functions (Chapter 5) we have a similar picture, but an x-window is introduced. The
limit definition for a function uses the same ϵ-neighborhood as a sequential limit, but since
we are not approaching infinity we need a δ-neighborhood as well.

Observe, for the x-window above, for any x in this neighborhood, the function values f (x)
are in the y -window. This means limx→2

1
x = 1

2 .
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Sequences are Everywhere

Definition

A sequence is an ordered list. For mathematicians, this can be list of numbers, sets,
functions, or even other sequences. If we do not specify, our sequences are always
infinite.

Example

The sequence of even integers is (2,4,6,8,. . . ).

A recursive formula for a sequence refers to previous terms in the sequence in order to
define a future term. For example, the sequence of even integers is written by x1 = 2,
xn = xn−1 + 2.
A function can define a sequence. For example, in our prelude we defined an = f (n)
where f (x) = 1

x . Sequences of real numbers can be thought of as functions themselves
with a domain of N.
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Theorem: The sequence x1 =
√

2, xn =
√

2 + xn−1 converges to 2.
Proof: We will use the Monotone
Convergence Theorem to prove this.

Note x1 =
√

2 < 2. Assume xk < 2.
Then 2 + xk < 4, which implies
xk+1 =

√
2 + xk <

√
4 = 2. Induction shows

xn < 2 for all n.
Now note that x1 =

√
2 <

√
2 +
√

2 = x2.
Assume that xk−1 < xk .
Then 2 + xk−1 < 2 + xk . By taking square
roots, xk =

√
2 + xk−1 <

√
2 + xk = xk+1.

Induction shows that xn < xn+1 for all n ∈ N.
Monotone Convergence allows us to say
that xn converges. Since xn =

√
2 + xn−1,

their limits also equal.

Proof Idea: This is a good chance to
reviewing the notion of proof by induction.
Remember: MCT says any bounded
increasing (or decreasing) sequence
converges.
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Proof Idea: This is a good chance to
reviewing the notion of proof by induction.
Remember: MCT says any bounded
increasing (or decreasing) sequence
converges.
We will begin by showing xn < 2 for all n.
This will be done by induction. What is the
next step?
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Proof Idea: This is a good chance to
reviewing the notion of proof by induction.
Remember: MCT says any bounded
increasing (or decreasing) sequence
converges.
We will begin by showing xn < 2 for all n.
This will be done by induction. What is the
next step?
Remember that induction has two steps:
prove for a base case (here x1), and then
prove that if something holds for xk , then it
holds for xk+1. You are lining up the
elements like dominos - the base case
knocks down the first.
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Monotone Convergence allows us to say
that xn converges. Since xn =

√
2 + xn−1,

their limits also equal.

Proof Idea:
We are now beginning another induction to
show that xn+1 > xn for all n. (This is the
definition of an increasing sequence.)
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The induction here is very similar to our
previous induction. We simply rewrite one
term to look like the next one in the
sequence, and the proof naturally follows.
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Monotone Convergence allows us to say
that xn converges. Since xn =
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2 + xn−1,
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Proof Idea:
We are now beginning another induction to
show that xn+1 > xn for all n. (This is the
definition of an increasing sequence.)
The induction here is very similar to our
previous induction. We simply rewrite one
term to look like the next one in the
sequence, and the proof naturally follows.
What we have done tells us we can take a
limit of both sides of our original equation.
We are about to square both sides and
claim the limits still equal - we will prove this
later.
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Convergence Theorem to prove this.
Note x1 =

√
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definition of an increasing sequence.)
The induction here is very similar to our
previous induction. We simply rewrite one
term to look like the next one in the
sequence, and the proof naturally follows.
—

If L := limn→∞ xn, then in squaring both
sides we get
L2 = limn→∞(2 + xn−1) = 2 + L.
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term to look like the next one in the
sequence, and the proof naturally follows.
—

If L := limn→∞ xn, then in squaring both
sides we get
L2 = limn→∞(2 + xn−1) = 2 + L.
Solving for L gets us L = −1, 2, and
since all of our terms are positive we get
that L = 2, completing the proof.
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Convergence

In order to prove the Monotone Convergence Theorem, we need a formal definition of a
limit. This is the purpose of MATH 409: formalizing intuitive notions in order to prove
strong theorems.

Definition

Let (sn) be a sequence of real numbers. We say that (sn) converges to a number L and
write limn→∞ sn = L provided that, for every ε > 0, there exists an integer N ∈ N so that,
whenever n ≥ N,

|sn − L| < ε.

Compare this to our 1
n example from our prelude, where L = 0.
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Theorem: lim
n→∞

n2

2n2 + 1
=

1
2

.

Proof: Fix an arbitrary ε > 0.

Choose N ∈ N such that N > 1
2
√
ε
.

Then for n ≥ N,∣∣∣∣ n2

2n2 + 1
− 1

2

∣∣∣∣ = 1
2(2n2 + 1)

≤ 1
2(2N2 + 1)

.

By our bound, this is less than or equal to

1
2

1
1 + 1

2ε

≤ 1
2

2ε = ε.

Proof Idea: The definition is asking us to
find an N such that∣∣∣∣ n2

2n2 + 1
− 1

2

∣∣∣∣ < ε.
for n ≥ N. It’s much easier to work
backwards.
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Proof Idea: The definition is asking us to
find an N such that∣∣∣∣ n2

2n2 + 1
− 1

2

∣∣∣∣ < ε.
for n ≥ N. It’s much easier to work
backwards.
By getting a common denominator, we get
this is equivalent to

1
2(2n2 + 1)

< ε.

(The absolute value disappeared since our
inside number is already positive.)
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Proof Idea:

1
2(2n2 + 1)

< ε.

We are trying to solve for n, so we keep
moving things around: we get 4n2 + 2 > 1

ε ,
or

n2 >
1
4
(
1
ε
− 2).
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Proof Idea:

1
2(2n2 + 1)

< ε.

We are trying to solve for n, so we keep
moving things around: we get 4n2 + 2 > 1

ε ,
or

n2 >
1
4
(
1
ε
− 2).

Finally, recall that we get to choose the N
we would like as long as it satisfies this
inequality. This means N could be as large
as we like, so it’s okay to add 1

2 to the
right-hand side. Solving for n, n > 1

2
√
ε
.
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.

By our bound, this is less than or equal to

1
2

1
1 + 1

2ε

≤ 1
2

2ε = ε.

Proof Idea:
We now just walk through the rest of the
proof. For an arbitrary ε > 0, we have
picked an N ∈ N; we only need show that
this N fits the definition |sn − L| < ε.
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Proof of MCT
Although we can find many other limits much like we did in this proof, the real use of this
definition is to build bigger theorems. You likely have other ways to find this limit - in this
unit we will go through and prove more machinery to make finding limits simpler.

Theorem (Monotone Convergence)

Let (sn) be a monotonic sequence. Then (sn) is convergent iff (sn) is bounded.

Proof.

Without loss of generality (WLOG) assume (sn) is non-decreasing and bounded. Let
L = sup sn.Then by definition of supremum, sn ≤ L for all n, and for all K ≤ L, there
exists m ∈ N such that K < sm.
Fix ε > 0. Then by the above there exists an N such that L − ε < sN . Since (sn) is
non-decreasing, sn ≥ sN for n ≥ N, so L − ε < sn ≤ L < L + ε for all n > N. Hence
|sn − L| < ε as desired. ■
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Uniqueness of Limits

The definition of a limit measures the smaller and smaller distance between points of a
sequence and the limit those points converge to. Say we are comparing the distance
between three points x , y , and z like below:

x y z

|x − y | < |x − z|+ |z − y |

x z y

|x − y | = |x − z|+ |z − y |

It is remarkably useful to combine these two possibilities into one inequality. This is
known as the Triangle Inequality: for any x , y , z ∈ R,

|x − y | ≤ |x − z|+ |z − y |.
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Theorem (Uniqueness of Limits)

Suppose that limn→∞ sn = L1 and limn→∞ sn = L2 are both true. Then L1 = L2.
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Theorem (Uniqueness of Limits)

Suppose that limn→∞ sn = L1 and limn→∞ sn = L2 are both true. Then L1 = L2.

Before beginning, let’s highlight that it’s not as simple as substitution to solve this problem.
What if there are multiple numbers that satisfy the definition of a limit?

n

an

1 2 3 4 5 6

−1
−0.5

0.5
1

an = (−1)n+1
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Theorem (Uniqueness of Limits)

Suppose that limn→∞ sn = L1 and limn→∞ sn = L2 are both true. Then L1 = L2.

Proof.

Let ε > 0 be arbitrary. Then there exists an N1 ∈ N such that |sn − L1| < ε for n ≥ N1.
There also exists an N2 ∈ N such that |sn − L2| < ε for n ≥ N2.

Let N = max{N1,N2}.
Then

|L1 − L2| =

|(L1 − sN) + (sN − L2)| ≤ |sN − L1|+ |sN − L2| = 2ε.

The inequality above is due to the Triangle Inequality. Letting ε→ 0, we get that

|L1 − L2| = 0

since it is smaller than any positive number. So L1 − L2 = 0⇒ L1 = L2.

■
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Divergence to Infinity

As we saw in our previous slide, not all sequences converge! Some have differing
subsequential limits - some elements may tend toward one limit and others tend
elsewhere. We will discuss these more following our discussion of subsequences.

Another way for sequences to diverge is also easy to see:

n

an

1 2 3 4 5 6

1

2

3

4

5
6

an = n
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Theorem: an = n diverges to infinity.
Proof:

Let M ∈ R.
By the Archimedean Property, there exists
a natural number N such that N ≥ M.
Hence for n ≥ N, an = n ≥ N ≥ M.
So (an) diverges to infinity by definition.

Proof Idea:

Definition

A sequence (sn) diverges to infinity if, for
all M ∈ R, there exists N ∈ N such that
sn ≥ M for all n ≥ N.
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we were finding where a function
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The Archimedean Property comes in handy
once again! Remember that, if this N would
not be possible to find, then M would be an
upper bound for N.
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Theorem: an =
n2 + 1
n + 1

→∞.

Proof: Let M ∈ N.

Let N := M + 1. Then aN = M2+2M+2
M+1 .

After long division, we get
aN = M + 1 + 1

M+1 ≥ M.
Note that an is increasing. So for n ≥ N,
an ≥ aN ≥ M. So an →∞.

Proof Idea: Let’s practice working
backwards with this proof. We want to find
an N such that, for any n ≥ N, n2+1

n+1 ≥ M.
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that n + 1

n+1 ≥ M + 1. (Why?) We can even
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Note that we used that M is a natural
number to make these definitions.

No need to prove that an is increasing... but
how would you prove it?
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A Quick Note: Absolute Value

Knowing our way around absolute value becomes essential around these proofs. Let us
gather what we know about absolute value here for reference. Assume x , y , z ∈ R.

|x | = 0 iff x = 0
|x − y | = |y − x |
|x − y | ≤ |x − z|+ |z − y | ← Triangle Inequality
|x − z| ≥ ||x − y | − |y − z|| ← Reverse Triangle Inequality
|xy | = |x ||y | ← Multiplicative

The first three rules (together with the fact that absolute value is never infinite and never
negative) makes | · | a norm on R.
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Boundedness of Sequences

Definition

We say a sequence (sn) is bounded if its range (collection of values) is a bounded set.
I.e., there exists an M ∈ R such that

|sn| ≤ M

for all n ∈ N.

Question: Are convergent sequences bounded? Yes! Proof upcoming.
Question: Are bounded sequences convergent? No! Consider an = (−1)n+1.
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Theorem

Every convergent sequence is bounded.

Proof.

Let (sn)→ L.

Then there exists some N such that, for n ≥ N, |sn − L| < 1. So for n ≥ N,
|sn| ≤ |sn − L|+ |L| < |L|+ 1.
Let M := max{|s1|, |s2|, . . . , |sN−1|, |L| + 1}.Then sn ∈ [−M,M] for all n ∈ N, and (sn) is
bounded. ■

Corollary (Converse)

Every unbounded sequence diverges.
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Theorem: sn =
∑n

k=1
1
n diverges.

Proof:

We will show that (sn) is unbounded;
the corollary on the previous slide will
complete the proof.
Observe the following:
s1 = 1.

s2 = 1 +
1
2
.

s4 = 1 +
1
2
+

(
1
3
+

1
4

)
≥ 1 +

1
2
+ 2

(
1
4

)
.

s8 = 1 +
1
2
+

(
1
3
+

1
4

)
+

(
1
5
+

1
6
+

1
7
+

1
8

)
≥ 1 +

1
2
+ 2

(
1
4

)
+ 4

(
1
8

)
.

Proof Idea: Let’s begin by understanding
the sequence. s1 = 1, s2 = 1 + 1

2 ,
s3 = 1 + 1

2 + 1
3 ... This is a sequence of

partial sums, whose limit is a series.
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2 ,
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partial sums, whose limit is a series.
Do you recall a Calculus II method we used
to determine whether this function
converged or diverged?
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—

Since s2n ≥ 1 + n
2 , (sn) is unbounded.

This completes the proof.
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Limit Laws

Let’s return to a previous limit we took: limn→∞
n2

2n2+1 = 1
2 . We can certainly prove this

using the limit definition, but on first glance there seems to be a more intuitive approach:

lim
n→∞

n2

2n2 + 1

= lim
n→∞

1
2 + 1

n2

=
1

limn→∞(2 + 1
n2 )

=
1

2 + limn→∞
1
n2

=
1
2
.

You can see how many intermediate steps we had to take - let’s go ahead and prove as
many as we can with the tools we’ve developed so we can use them right away.
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n→∞

1
2 + 1

n2

=
1

limn→∞(2 + 1
n2 )

=
1

2 + limn→∞
1
n2

=
1
2
.

You can see how many intermediate steps we had to take - let’s go ahead and prove as
many as we can with the tools we’ve developed so we can use them right away.
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Theorem (Multiples of Limits)

Let sn → s. Then for C ∈ R, Csn →

Cs.

For this problem we want to fix an ε > 0, then find a big enough N such that n ≥ N implies
|Csn − Cs| < ε.

Proof.

If C = 0, Csn is a sequences of 0’s, which converges to 0 as claimed.

Fix an ε > 0.
Choose N such that, for n ≥ N, |sn−s| < ε

|C| .Then |Csn−Cs| = |C||sn−s| < |C| ε|C| = ε.
So Csn → Cs. ■
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Theorem (Sums/Differences of Limits)

Suppose sn → s, tn → t . Then limn→∞(sn + tn) =

s + t

and limn→∞(sn − tn) =

s − t

.

For this problem we want to fix an ε > 0, then find a big enough N such that n ≥ N implies
|(sn + tn)− (s + t)| < ε. Note |(sn − s) + (tn − t)| ≤ |sn − s|+ |tn − t |.

Proof.

Fix ε > 0. Choose N1 such that |sn − s| < ε
2 and N2 such that |tn − t | < ε

2 . Let
N = max{N1,N2}. Then for n ≥ N, |(sn + tn)− (s+ t)| ≤ |sn−s|+ |tn− t | < ε2 +

ε
2 = ε.So

sn + tn → s + t . The proof that sn − tn → s − t is similar. ■
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Theorem (Comparison Test I)

Suppose (sn) is a convergent sequence such that sn ≥ 0 for all n.

Then limn→∞ sn ≥ 0.
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Theorem (Comparison Test I)

Suppose (sn) is a convergent sequence such that sn ≥ 0 for all n. Then limn→∞ sn ≥ 0.

Proof.

Let L := limn→∞ sn. Fix an ε > 0, and choose N such that |sn − L| < ε. Note that

0 ≤ sn = (sn − L) + L < L + ε.

By rearranging, we get L > −ε. Let ε→ 0; then L ≥ 0. ■

John M. Weeks Advanced Calculus I 2023-08-02 56 / 188



Theorem (Comparison Test I)

Suppose (sn) is a convergent sequence such that sn ≥ 0 for all n. Then limn→∞ sn ≥ 0.

Proof.

Let L := limn→∞ sn. Fix an ε > 0, and choose N such that |sn − L| < ε. Note that

0 ≤ sn = (sn − L) + L < L + ε.

By rearranging, we get L > −ε.

Let ε→ 0; then L ≥ 0. ■

John M. Weeks Advanced Calculus I 2023-08-02 56 / 188



Theorem (Comparison Test I)

Suppose (sn) is a convergent sequence such that sn ≥ 0 for all n. Then limn→∞ sn ≥ 0.

Proof.

Let L := limn→∞ sn. Fix an ε > 0, and choose N such that |sn − L| < ε. Note that

0 ≤ sn = (sn − L) + L < L + ε.

By rearranging, we get L > −ε. Let ε→ 0; then L ≥ 0. ■

John M. Weeks Advanced Calculus I 2023-08-02 56 / 188



Theorem (Comparison Test I)

Suppose (sn) is a convergent sequence such that sn ≥ 0 for all n. Then limn→∞ sn ≥ 0.

John M. Weeks Advanced Calculus I 2023-08-02 56 / 188



Theorem (Comparison Test I)

Suppose (sn) is a convergent sequence such that sn ≥ 0 for all n. Then limn→∞ sn ≥ 0.

Corollary

Let (sn), (tn) be two convergent sequences such that sn ≤ tn for all n. Then

limn→∞ sn ≤
limn→∞ tn.
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Theorem (Comparison Test I)

Suppose (sn) is a convergent sequence such that sn ≥ 0 for all n. Then limn→∞ sn ≥ 0.

Corollary

Let (sn), (tn) be two convergent sequences such that sn ≤ tn for all n. Then limn→∞ sn ≤
limn→∞ tn.

Proof.

Since sn ≤ tn, (tn − sn) ≥ 0. So limn→∞ tn − sn ≥ 0 by the above theorem. By Sums of
Limits Theorem, limn→∞ sn ≤ limn→∞ tn. ■
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Corollary

Let (sn), (tn) be two convergent sequences such that sn ≤ tn for all n. Then limn→∞ sn ≤
limn→∞ tn.

Corollary (Squeeze Theorem)

Suppose that (sn) and (tn) are convergent sequences such that limn→∞ sn = limn→∞ tn
and, for some other sequence (xn), sn ≤ xn ≤ tn.

Then (xn) is also convergent and

lim
n→∞

xn = lim
n→∞

sn = lim
n→∞

tn.
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Corollary

Let (sn), (tn) be two convergent sequences such that sn ≤ tn for all n. Then limn→∞ sn ≤
limn→∞ tn.

Corollary (Squeeze Theorem)

Suppose that (sn) and (tn) are convergent sequences such that limn→∞ sn = limn→∞ tn
and, for some other sequence (xn), sn ≤ xn ≤ tn. Then (xn) is also convergent and

lim
n→∞

xn = lim
n→∞

sn = lim
n→∞

tn.

Proof.

Exercise. Note that we must prove (xn) is convergent. ■
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Theorem (Comparison Test II)

Suppose that sn → ∞ and tn ≥ sn.

Then tn → ∞. Similarly, if tn → −∞ and sn ≤ tn,
sn → −∞.

Proof.

Exercise. ■
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Theorem (Products of Limits)

Suppose sn → s, tn → t . Then lim(sntn) =

st.

Note that |sntn − st | = |sn(tn − t) + snt − st | ≤ |sn||tn − t |+ |t ||sn − s|. This triangle
inequality trick is used often when dealing with products. Note: we can control N to make
|tn − t |, |sn − s| as small as we would like. |t | is a constant, which means we can use it in
our choice of N. Finally, (sn) converges, so... it is bounded.

Proof.

If t = 0, |sntn − 0| ≤ |sn||tn − 0|+ |0||sn − s| ⇒ |sntn| ≤ |sn||tn|. Since (sn) is convergent,
there exists some M such that |sn| ≤ M for all n ∈ N. Since tn → t = 0, there exists an N
such that n ≥ N implies |tn| < ε

M . Then for n ≥ N, |sntn| ≤ |sn||tn| < M
(
ε
M

)
= ε.

If t ̸= 0,

choose N1 such that n ≥ N1 implies |sn − s| < ε
2|t | . Also choose N2 such that

n ≥ N2 implies |tn− t | < ε
2M (where M is as above). Set N := max{N1,N2} and note that,

for n ≥ N, |sntn − st | ≤ |sn||tn − t |+ |t ||sn − s| < M( ε2M ) + |t | ε2|t | = ε. ■
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Theorem (Quotients of Limits)

Suppose sn → s, tn → t . Suppose further that tn ̸= 0 for all n and that limn→∞ tn ̸= 0.
Then limn→∞( sn

tn ) =
s
t .

Proof.

Theorem 2.17 proof in TBB, pages 40-41. ■
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Defining Subsequences

Let’s return to a sequence we have seen before:

n

an

1 2 3 4 5 6

−1
−0.5

0.5
1

an = (−1)n+1

This sequence proceeds: (1,−1, 1,−1, 1,−1, . . . ).

We can actually show this sequence
does not converge with the definition of the limit.

(Try cases: L ≥ 0 and L < 0.)

Proof Idea.

Let ε = 1. We must show for all N and L, there exists n ≥ N s.t. |an − L| ≥ 1 = ε. ■
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n

an

1 2 3 4 5 6

−1
−0.5

0.5
1

We can try to isolate a subsequence (ank ) - an infinite subset of (an) - that does
converge. For example, if n is odd, an = 1, so let nk = −1+ 2k . Then (ank ) = (1, 1, 1, . . . ).

Similarly, if n is even, an = −1, so we could let nj = 2k . Then anj = (−1,−1,−1, . . . ).

These two subsequences converge to 1 and -1 respectively. These are all of our
subsequential limits.The highest of the subsequential limits for a sequence (sn) is the
limit superior of (sn), lim supn→∞ sn.The lowest of the subsequential limits for a
sequence (sn) is the limit inferior of (sn), lim infn→∞ sn.
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Monotonic Subsequences

Exercise: Find a monotonic subsequence of the sequence an = (−1)nn.

The (−1)n piece flips the polarity of the sequence each term. Let’s just focus on the even
terms.
a2n = (−1)2n · (2n) = 2n. This is a monotonic subsequence of an.

Theorem

Every sequence (xn) contains a monotonic subsequence.

Proof.

Let’s define xm ∈ (xn) to be a turnback point if no element past xm is greater than xm.
What happens if there are infinitely many turnback points? We can form an infinite subset
of (xn) consisting of just these points. By their definition, xm1 ≥ xm2 if m1 < m2. So (xmk )
is non-increasing, hence monotonic.
What if there are finitely many turnback points? Then there is a farthest turnback point,
xM . So xM+1 is not a turnback point, meaning there is some m1 > M + 1 where xm1 >
xM+1. xm1 is also not a turnback point, so there is some m2 > m1 where xm2 > xm1 .
Continuing this process, we get an increasing sequence xM+1 < xm1 < xm2 < · · · .

■
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Corollary (Bolzano-Weierstrass Theorem)

Every bounded sequence (xn) contains a convergent subsequence.

Proof.

The sequence (xn) contains a monotone subsequence (xnk ) by the previous theorem.
Since (xn) is bounded, (xnk ) is bounded. So (xnk ) is bounded and monotone, hence
convergent by the Monotone Convergence Theorem. ■

As niche as this theorem seems, this is a remarkable tool on R and will come in handy for
us later.
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Theorem: (xn) is convergent iff lim supn xn = lim infn xn and these are finite.

Proof: (⇒) is left as an exercise.

(⇐) Fix ε > 0. First, if lim supn→∞ xn = L,
then there exists an N1 such that, for all
n ≥ N1, xn − L < ε.

Similarly, if lim infn→∞ xn = L as well, then
there exists an N2 such that, for all n ≥ N2,
L− xn < ε.
Hence for all n ≥ max{N1,N2} =: N,
L− ε < xn < L + ε.
By definition, xn → L.

Proof Idea: If L is the limit of the sequence
xn, this looks like the definition of the limit.

This gives us another way to determine whether (−1)n+1 converges: Since
1 = lim supn(−1)n+1 ̸= lim infn(−1)n+1 = −1, the sequence does not converge.
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“Close" Sequences

We have conceptualized convergent sequences as sequences that approach a point.
What happens if we think of a sequence where the points get closer to one another?

R
0 0.5 0.75 0.875 1 an = 1− 1

n

Definition

We say a sequence (sn) is Cauchy if, for all ε > 0, there exists an N ∈ N such that,
whenever n,m > N,

|sn − sm| < ε.

The biggest thing missing from this definition is its biggest utility - there is no limiting value
given for this sequence.
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Theorem

Every convergent sequence is Cauchy.

Proof.

Let sn → s. Then for any ε > 0, there exists an N ∈ N such that |sn − s| < ε
2 for any

n > N. Hence for any m > N, |sm − s| < ε
2 as well. So for m, n > N, |sn − sm| ≤

|sn − s|+ |sm − s| < ε2 + ε2 = ε. This proves (sn) is Cauchy by definition. ■

Question: What is a Cauchy sequence that is not convergent? In Q, there are quite a few.
The sequence of decimal approximations for

√
2, 1, 1.4, 1.41, 1.414, . . . , has no limit in Q

because it has its limit in a bigger, complete space R. In R, however, it turns out that there
can be no Cauchy, non-convergent sequences.
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Theorem (Cauchy Criterion)

A sequence (sn) is convergent iff (sn) is Cauchy.

Proof.

We have proven (⇒). It only remains to show (⇐).

In our homework we will prove that
every Cauchy sequence is bounded. Hence we may apply Bolzano-Weierstrass to find a
convergent subsequence (sni ). Say s is the element that sni converges to.
We claim that sn → s. Fix ε > 0, and let N ∈ N be such that, for n,m > N, |sn − sm| < ε2 .
We can also choose I such that i > I implies |sni − s| < ε. Choose m to be larger than
nI . Then |sn − L| ≤ |sn − sm|+ |sm − L| < ε2 + ε2 = ε. ■

Notions of equivalence are very strong in analysis - we are saying that these notions of
“closeness" (Cauchy) and “limiting" (convergent) are identical in R (whereas they are not
the same in Q!).
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Construction of R
As easy as it was to delineate what rational numbers, we are now finally ready to discuss
what real numbers are.

Definition

Consider the collection S of Cauchy sequences in Q. We define an equivalence relation:
we say (sn) ∼ (tn) if the sequence (sn − tn) → 0. This equivalence relation induces a
partition of S. We will call it S/ ∼. We define

R = S/ ∼ .

For example, the equivalence class of (1, 1.4, 1.41, 1.414, . . . ) would be a real number
called “

√
2". We have to consider an equivalence class since (2, 1.5, 1.42, 1.415, . . . ) also

approaches
√

2, as does (0, 0, 0, 1, 1.4, 1.41, . . . ).... There is much more to ask: how do
we add/multiply/prove the axioms of R?
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Types of Sums

A finite sum is a sum over a finite index k ∈ {1, . . . , n}. For example,

n∑
k=1

k = 1 + 2 + 3 + · · ·+ n =
n(n + 1)

2
.

A special type of finite sum is

n∑
k=1

1
k(k + 1)

=
n∑

k=1

1
k
− 1

k + 1

= 1− 1
n + 1

.

We can take the terms of this sum and cancel them out, link-by-link:
(1

1 −
1
2) + (1

2 −
1
3) + (1

3 −
1
4) + · · · . This is known as a telescoping sum.
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There are also geometric sums:

1 + r + r2 + r3 + · · ·+ rn−1 + rn =
1− rn+1

1− r
.

We can attempt to take limits in each of these sums in the variable n to make infinite
ordered sums, or series. Each partial sum becomes an element of a sequence:∑∞

k=1 ak = limn→∞ sk , where

(sk ) = (a1, a1 + a2, a1 + a2 + a3, . . . ).

We get plenty of help on series from our study on sequences:

If
∑∞

k=1 ak converges, the sum is unique.

If
∑∞

k=1 ak = a and
∑∞

k=1 bk = b, then∑∞
k=1(ak + bk ) converges to a + b.

If
∑∞

k=1 ak = a, then
∑∞

k=1 cak converges
to ca.

If
∑∞

k=1 ak = a and
∑∞

k=1 bk = b and
ak ≤ bk for all k , then a ≤ b.
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If
∑∞

k=1 ak = a, then
∑∞

k=1 cak converges
to ca.

If
∑∞

k=1 ak = a and
∑∞

k=1 bk = b and
ak ≤ bk for all k , then a ≤ b.
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We also get a theorem we haven’t had much use for but comes in handy when discussing
series:

Theorem

Let M ≥ 1 be any integer. Then the series
∑∞

k=1 ak = a1 + a2 + a3 + · · · converges iff
the series

∑∞
k=1 aM+k = aM+1 + aM+2 + aM+3 + · · · converges.

We call the notion of a sequence beginning beyond the first element the “tail end" of a
series. The above theorem says what happens at the beginning of a series doesn’t
impact much when it comes to convergence - only what happens as the series goes
toward infinity.
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Calculating with Sums

Exercise: Obtain a formula for the sum
∑∞

k=1
1

k(k+2)(k+4) .

Note by partial fractions that 1
k(k+2)(k+4) =

1
8k −

1
4(k+2) +

1
8(k+4) . We want this to telescope,

but right now only one thing is being subtracted. So we rewrite this as

1
k(k + 2)(k + 4)

=

(
1

8k
− 1

8(k + 2)

)
+

(
− 1

8(k + 2)
+

1
8(k + 4)

)
.

Factoring out a 1/8 and solving,

∞∑
k=1

1
k(k + 2)(k + 4)

=
1
8

[ ∞∑
k=1

(
1
k
− 1

k + 2
) +

∞∑
k=1

(− 1
k + 2

+
1

k + 4
)

]
.

The first sum gives us 1 + 1
2 , and the second sum gives −1

3 −
1
4 . (Why?) Adding these

and multiplying by 1
8 gives us 11

96 .
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Series Tests

Theorem (Ratio Test)

Let
∑

xn be a series, xn ̸= 0 for all n, such that

L := lim sup
n

|xn+1|
|xn|

exists.

1 If L < 1, then
∑

xn converges absolutely.

2 If |xn+1|
|xn| > 1 for all n > N for some N ∈ N, then

∑
xn diverges.

John M. Weeks Advanced Calculus I 2023-08-02 73 / 188



Series Tests

Theorem (Ratio Test)

Let
∑

xn be a series, xn ̸= 0 for all n, such that

L := lim sup
n

|xn+1|
|xn|

exists.

1 If L < 1, then
∑

xn converges absolutely.

2 If |xn+1|
|xn| > 1 for all n > N for some N ∈ N, then

∑
xn diverges.

John M. Weeks Advanced Calculus I 2023-08-02 73 / 188



Lemma

If
∑

xn converges, then xn → 0.
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Lemma

If
∑

xn converges, then xn → 0.

Proof.

We have
∑∞

1 xn =
∑N

1 xn +
∑∞

N+1 xn.

Hence
∑∞

1 xn = limN
∑∞

1 xn = limN
∑N

1 xn +
limN

∑∞
N xn. Since this first term on the right-hand side limits to

∑∞
1 xn, limN

∑∞
N xn → 0.

In fact, if xn ̸→ 0, then (sn) := (
∑∞

N xn) is not Cauchy! By definition of xn ̸→ 0, there is
some ε > 0 such that, for all N ∈ N, there exists some n > N such that |xn| ≥ ε Then
|sn − sn−1| = |xn| ≥ ε, showing that (sn) is not Cauchy. So by contrapositive, xn → 0. ■
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Lemma

If
∑

xn converges, then xn → 0.

of Ratio Test.

(ii) Note that xn ̸→ 0. Apply the contrapositive of the lemma above.

(i) We first show that (|xn|) is bounded. Let C be the value of lim supn

∣∣∣ xn+1
xn

∣∣∣. Then for all
ε > 0 there is some N ∈ N such that n > N implies

|xn+1|
|xn|

− C < ε.

Choose ε such that 0 < ε < 1−C so that C+ε < 1. Then for n > N, |xn+1| < (C+ε)|xn|.
So (xn) is bounded by max{|x1|, |x2|, . . . , |xN |}.
The rest uses the techniques we have developed and is left as a homework exercise.

■
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Theorem (Alternating Series Test)

Let (xn) be a monotone decreasing sequence of positive real numbers such that lim xn =
0. Then

∞∑
n=1

(−1)nxn

converges.

Example:
∑∞

n=1
1
n diverges, but

∑∞
n=1(−1)n 1

n converges.
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Proof of Alternating Series Test.

If sn is the nth partial sum of this series, we note that s2n is decreasing since (xn) is
decreasing (and hence xi−1 ≤ xi ):

s2n = (−x1 + x2) + · · ·+ (x2n−1 − x2n)

We also note that s2n is bounded below (note xi ≥ xi−1 ⇒ xi − xi−1 > 0):

s2n = −x1 + (x2 − x3) + · · ·+ (x2n−2 − x2n−1) + x2n ≥ −x1.

So s2n converges to some point a. We want to be able to say something about s2n+1,
however. Note that

|s2n+1 − a| = |s2n − a + x2n+1| ≤ |s2n − a|+ x2n+1.

Each term can be made small: the first term since s2n converges to a, and the second
term since xn converges to 0. Hence |sm − a| → 0. (Why?) ■
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Prelude to Topology

It has been a while since we have seen sets (other than sequences) play a major role.
This was a major subject of MATH 300 and will be very important in all future parts of the
advanced calculus sequence, but we needed to develop sequences before sets became
useful again.

We can now attempt to understand the topology of sets in R, which measures closeness
and separation between elements and sets in a space. In this course we will define what
open and closed sets are in terms of their points - this is known as point-set topology.

R−3 −2 −1 0 1 2 3
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Points

Discussing points is useful in helping us define sets in a nice way. We would like to
generalize open intervals in a notion called an open set, where the set is possibly not an
interval. We would like to do something similar with closed sets, generalizing closed
intervals.

Definition

Let E be a set of real numbers. Any point x ∈ E is an interior point of E if there exists
some ε > 0 such that

(x − ε, x + ε) ⊂ E .

“Interior" can be thought of as being “well within" the set, having cushion on either side.

Question: What points in an open interval are interior points? All of them! If x ∈ (a, b),
pick the smaller of x − a and b − x - call it ε. Note these can’t be zero since a, b /∈ (a, b).
Finally, (x − ε, x + ε) ⊂ (a, b). So any arbitrary x ∈ (a, b) is an interior point.
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Definition

Let E be a set of real numbers. Any point x ∈ E is an interior point of E if there exists
some ε > 0 such that

(x − ε, x + ε) ⊂ E .

1 All points in (a, b) are interior points.

2 What points in [a, b] are interior points? All points other than a and b.
3 What points in N are interior points? None. In fact, points of N are considered

isolated, which we will define next.
4 What points in Q are interior points? None. Every interval of R contains both rational

and irrational points. (We will soon see that points in Q aren’t isolated...)
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Definition

Let E be a set of real numbers. Any point x that belongs to E is said to be an isolated
point of E provided that for some interval (x − ε, x + ε),

(x − ε, x + ε) ∩ E = {x}.

This means that, in some ε-neighborhood, x is the only point in that set. It is far away
from other points.

1 Every point in N is isolated.
2 Every point in Q is not isolated.
3 What points in (a, b) are isolated? None. What about in [a, b]? None.
4 What points in {x} are isolated? The point x .

John M. Weeks Advanced Calculus I 2023-08-02 80 / 188



Definition

Let E be a set of real numbers. Any point x that belongs to E is said to be an isolated
point of E provided that for some interval (x − ε, x + ε),

(x − ε, x + ε) ∩ E = {x}.

This means that, in some ε-neighborhood, x is the only point in that set. It is far away
from other points.

1 Every point in N is isolated.
2 Every point in Q is not isolated.
3 What points in (a, b) are isolated? None. What about in [a, b]? None.
4 What points in {x} are isolated? The point x .

John M. Weeks Advanced Calculus I 2023-08-02 80 / 188



Definition

Let E be a set of real numbers. Any point x that belongs to E is said to be an isolated
point of E provided that for some interval (x − ε, x + ε),

(x − ε, x + ε) ∩ E = {x}.

This means that, in some ε-neighborhood, x is the only point in that set. It is far away
from other points.

1 Every point in N is isolated.
2 Every point in Q is not isolated.

3 What points in (a, b) are isolated? None. What about in [a, b]? None.
4 What points in {x} are isolated? The point x .

John M. Weeks Advanced Calculus I 2023-08-02 80 / 188



Definition

Let E be a set of real numbers. Any point x that belongs to E is said to be an isolated
point of E provided that for some interval (x − ε, x + ε),

(x − ε, x + ε) ∩ E = {x}.

This means that, in some ε-neighborhood, x is the only point in that set. It is far away
from other points.

1 Every point in N is isolated.
2 Every point in Q is not isolated.
3 What points in (a, b) are isolated?

None. What about in [a, b]? None.
4 What points in {x} are isolated? The point x .

John M. Weeks Advanced Calculus I 2023-08-02 80 / 188



Definition

Let E be a set of real numbers. Any point x that belongs to E is said to be an isolated
point of E provided that for some interval (x − ε, x + ε),

(x − ε, x + ε) ∩ E = {x}.

This means that, in some ε-neighborhood, x is the only point in that set. It is far away
from other points.

1 Every point in N is isolated.
2 Every point in Q is not isolated.
3 What points in (a, b) are isolated? None. What about in [a, b]?

None.
4 What points in {x} are isolated? The point x .

John M. Weeks Advanced Calculus I 2023-08-02 80 / 188



Definition

Let E be a set of real numbers. Any point x that belongs to E is said to be an isolated
point of E provided that for some interval (x − ε, x + ε),

(x − ε, x + ε) ∩ E = {x}.

This means that, in some ε-neighborhood, x is the only point in that set. It is far away
from other points.

1 Every point in N is isolated.
2 Every point in Q is not isolated.
3 What points in (a, b) are isolated? None. What about in [a, b]? None.
4 What points in {x} are isolated?

The point x .

John M. Weeks Advanced Calculus I 2023-08-02 80 / 188



Definition

Let E be a set of real numbers. Any point x that belongs to E is said to be an isolated
point of E provided that for some interval (x − ε, x + ε),

(x − ε, x + ε) ∩ E = {x}.

This means that, in some ε-neighborhood, x is the only point in that set. It is far away
from other points.

1 Every point in N is isolated.
2 Every point in Q is not isolated.
3 What points in (a, b) are isolated? None. What about in [a, b]? None.
4 What points in {x} are isolated? The point x .

John M. Weeks Advanced Calculus I 2023-08-02 80 / 188



Definition

Let E be a set of real numbers. Any point x (not necessarily in E) is said to be an
accumulation point of E if for every ε > 0, the intersection (x − ε, x + ε)∩ (E \{x}) ̸= ∅.

R
0 0.5 0.75 0.875 1 an = 1− 1

n

The set in the definition above should be understood in the context of the picture. The
number 1 is not in the set {1− 1

n : n ∈ N}. However, no matter how far you widen your
neighborhood starting at 1, you will always have a point in the set. So 1 is an
accumulation point.
What other accumulation points are there for this set? None! 1 is the only accumulation
point. Notably, every point in E is isolated.
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1 What are the accumulation points of (a, b)?

[a, b]. This suggests a notion of “closing"
a set - including the accumulation points from (a, b) gives us the closed version of the
interval.

2 What are the accumulation points of Q? All of R consists of accumulation points for Q.
(Every interval of R contains infinitely many rational numbers.)
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Closed Sets

Recall the example where adding the accumulation points of (a, b) to the set itself gives
us its “closure": [a, b]. We would like to formalize this notion. First, let’s define the word
“closed" to apply to more than just intervals:

Definition

Let E be a set of real numbers. The set E is said to be closed provided that every
accumulation point of E belongs to E .

1 The empty set ∅ is closed.
2 The open interval (a, b) is not closed - it does not include the accumulation points a

and b.

3 The closed interval [a, b] is closed.
4 The set of natural numbers N is closed.

5 The set of real numbers R is closed.
6 The set of rational numbers Q is

closed.
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Definition

Let E be a set of real numbers, and let E ′ denote the set of accumulation points of E .
Then the set E = E ∪ E ′ is defined to be the closure of E .

For example, (a, b) = [a, b], [a, b] =

[a, b], N = N, and Q = R.
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Open Sets
We would like to characterize open sets to be like our open interval (a, b). The simplest
idea is to say open sets are “the not closed ones", but sets like (a, b] don’t seem to fit our
idea of being open.

Recall that our open interval had the property that every point was an
interior point. We will make our definition to be similar.

Definition

Let E be a set of real numbers. Then E is said to be open if every point of E is also an
interior point of E .

1 The empty set is open, since it has no points to begin with. This means the definition
vacuously holds for ∅.

2 The closed interval [a, b] is not open, since a, b are not interior points.
3 The set N is not open; each of its points fail to be interior points.
4 The set R is open. R and ∅ are the only clopen sets.
5 The set Q is not open.
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Definition

Let E be a set of real numbers. Then the interior of E , E◦, if the collection of all interior
points of E .

For example, (a, b)◦ = (a, b), [a, b]◦ = (a, b), N◦ = ∅ = Q◦.

Claim

All open sets are of the form (a, b) for some a < b ∈ R.

What about (0, 1) ∪ (2, 3)?

Theorem

Let G be a nonempty open set of real numbers. Then there exists a1 < b1 = a2 < b2 =
a3 < b3 = · · · such that

G = (a1, b1) ∪ (a2, b2) ∪ (a3, b3) ∪ · · · ∪ (an, bn)

∪ · · ·

.
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Properties of Open and Closed Sets

We start off with a banger:

Theorem

Let A be a set of real numbers. Recall that the complement of A is the collection of
points not in A, written as Ac or R \ A. Let B := Ac . Then A is open iff B is closed.

Proof.

We will prove both ways by contradiction.
(⇒) Say A is open and assume B fails to be closed. Then there is a point z that is a
point of accumulation for B but is not in B. Then z ∈ A since Bc = A.But this means
z is an interior point of A, so there is some ε > 0 such that (z − ε, z + ε) ⊂ A. This
neighborhood cannot intersect B, by complement, contradicting the fact that z is a point
of accumulation for B. ■
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z is an interior point of A, so there is some ε > 0 such that (z − ε, z + ε) ⊂ A. This
neighborhood cannot intersect B, by complement, contradicting the fact that z is a point
of accumulation for B.
(⇐) Say B is closed and assume A fails to be open. Then there is a point z ∈ A that is
not an interior point, meaning that every interval (z − ε, z + ε) intersects B.

This means
z is an accumulation point of B. But since B is closed, z ∈ B, contradicting that B is the
complement of A. ■
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Theorem

Let A1,A2,A3, . . . ,An be open sets. Then
⋂n

i=1 Ai is also open.

Proof.

This intersection may be empty, but the empty set is open, so no worries here.
Otherwise let x ∈

⋂n
i=1 Ai . Then x ∈ Ai for each i ∈ [n] := {1, 2, . . . , n}. Since Ai

is open, there exists some εi such that (x − εi , x + εi) ⊂ Ai . Let ε := mini∈[n] εi ; then
(x − ε, x + ε) ⊂ (x − εi , x + εi) ⊂ Ai for all i . Hence (x − ε, x + ε) ⊂

⋂n
i=1 Ai , so x is an

interior point of
⋂n

i=1 Ai . Since x was an arbitrary point of
⋂n

i=1 Ai , we have proven every
point of the set is an interior point, so this finite intersection is open. ■

Corollary

Let B1,B2,B3, . . . ,Bn be closed sets. Then
⋃n

i=1 Bi is also closed.
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Theorem

Let (Ai)i∈I be an arbitrarily-sized collection of open sets. Then
⋃

i∈I Ai is open.

Proof.

Let x ∈
⋃

i∈I Ai . Then x ∈ Ai for some i ∈ I. So there is some ε > 0 such that
(x − ε, x + ε) ⊂ Ai ⊂

⋃
i∈I Ai . So x is an interior point of

⋃
i∈I Ai . Since x was an arbitrary

point in the set, every point in that set is an interior point, so
⋃

i∈I Ai is open. ■

Corollary

Let (Bi)i∈I be an arbitrarily-size collection of closed sets. Then
⋂

i∈I Bi is closed.
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Lemma

The closure of a set is closed. The closure of a closed set is itself.

Theorem

Let E be a set of real numbers. Then E is the smallest closed set containing E. (I.e., if F
is another closed set containing E, E ⊂ F.

Proof.

By definition of closure, E ⊂ E and E is closed. Let F be another closed set containing
E . Then E ⊂ F ⇒ E ⊂ F = F . ■

Corollary

Let E be a set of real numbers. Then E◦ is the largest open set contained in E.
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Compactness
There is one more property of a set that is discovered around a large variety of different
branches of analysis. The term “compact" is a rank of strength just below “finite". If
something holds for every element of a finite set, there is almost certainly something very
strong that can be said about the entire set itself.

Theorem

If E is finite and f is bounded on each x ∈ E, then f is (globally) bounded on E.

Proof.

Let E = {x1, . . . , xn}. Then |f (xi)| ≤ Mi for each i ∈ [n].Let M := max{Mi}; then for
x ∈ E , f (x) ∈ (−M,M). So f is bounded on E . ■

This isn’t very strong - it makes sense that boundedness on each point of a finite set
implies boundedness. We also certainly require finiteness in order to take a the maximum
of the Mi above, so it is unclear how to make this stronger.
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Theorem

If E is finite and f is bounded on each x ∈ E, then f is (globally) bounded on E.

What if we strengthened our requirements for f?

Definition

We say a function f is locally bounded on a set E if, for all x ∈ E , there exists a δ > 0
such that f is bounded on the set (x − δ, x + δ).

It turns out that, with this added strength, we can relax our condition E to be closed and
bounded (which we will call compact):

Theorem

Let E be closed and bounded. Then every function f : E → R that is locally bounded on
E is (globally) bounded on E.
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Revisiting Bolzano-Weierstrass

Because compactness is so ubiquitous, we look for all things that can imply compactness
- or for equivalent definitions to “closed and bounded". One candidate is the
Bolzano-Weierstrass property.

Definition

We say a set E has the Bolzano-Weierstrass Property if every sequence (sn) in E has
a subsequence converging to a point in E .
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Theorem

Let E be a set of real numbers. Then E is compact iff E has the Bolzano-Weierstrass
property.

Proof.

■
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Let E be a set of real numbers. Then E is compact iff E has the Bolzano-Weierstrass
property.

Proof.

(⇒) Let E be closed and bounded and let (xn) be a sequence contained in E .

Since E
is bounded, (xn) is bounded too. We know from another Bolzano-Weierstrass Theorem
that any bounded sequence has a convergent subsequence - let (xnk ) be that convergent
subsequence and assume it converges to x .
Is x in E? The definition of limit says that xnk is eventually (x − ε, x + ε). Since xnk is in E ,
we see that x is an accumulation point of E by definition. So x ∈ E .

■

John M. Weeks Advanced Calculus I 2023-08-02 95 / 188



Theorem

Let E be a set of real numbers. Then E is compact iff E has the Bolzano-Weierstrass
property.

Proof.

(⇒) Let E be closed and bounded and let (xn) be a sequence contained in E . Since E
is bounded, (xn) is bounded too. We know from another Bolzano-Weierstrass Theorem
that any bounded sequence has a convergent subsequence - let (xnk ) be that convergent
subsequence and assume it converges to x .

Is x in E? The definition of limit says that xnk is eventually (x − ε, x + ε). Since xnk is in E ,
we see that x is an accumulation point of E by definition. So x ∈ E .

■

John M. Weeks Advanced Calculus I 2023-08-02 95 / 188



Theorem

Let E be a set of real numbers. Then E is compact iff E has the Bolzano-Weierstrass
property.

Proof.

(⇒) Let E be closed and bounded and let (xn) be a sequence contained in E . Since E
is bounded, (xn) is bounded too. We know from another Bolzano-Weierstrass Theorem
that any bounded sequence has a convergent subsequence - let (xnk ) be that convergent
subsequence and assume it converges to x .
Is x in E?

The definition of limit says that xnk is eventually (x − ε, x + ε). Since xnk is in E ,
we see that x is an accumulation point of E by definition. So x ∈ E .

■

John M. Weeks Advanced Calculus I 2023-08-02 95 / 188



Theorem

Let E be a set of real numbers. Then E is compact iff E has the Bolzano-Weierstrass
property.

Proof.

(⇒) Let E be closed and bounded and let (xn) be a sequence contained in E . Since E
is bounded, (xn) is bounded too. We know from another Bolzano-Weierstrass Theorem
that any bounded sequence has a convergent subsequence - let (xnk ) be that convergent
subsequence and assume it converges to x .
Is x in E? The definition of limit says that xnk is eventually (x − ε, x + ε).

Since xnk is in E ,
we see that x is an accumulation point of E by definition. So x ∈ E .

■

John M. Weeks Advanced Calculus I 2023-08-02 95 / 188



Theorem

Let E be a set of real numbers. Then E is compact iff E has the Bolzano-Weierstrass
property.

Proof.

(⇒) Let E be closed and bounded and let (xn) be a sequence contained in E . Since E
is bounded, (xn) is bounded too. We know from another Bolzano-Weierstrass Theorem
that any bounded sequence has a convergent subsequence - let (xnk ) be that convergent
subsequence and assume it converges to x .
Is x in E? The definition of limit says that xnk is eventually (x − ε, x + ε). Since xnk is in E ,
we see that x is an accumulation point of E by definition. So x ∈ E .

■

John M. Weeks Advanced Calculus I 2023-08-02 95 / 188



Theorem

Let E be a set of real numbers. Then E is compact iff E has the Bolzano-Weierstrass
property.

Proof.

(⇐) Say E has the property that every sequence has a subsequence that converges to
a point in E .

Then E is bounded; if E is unbounded we can choose a sequence that
diverges to infinity, and no subsequence of that sequence can even converge.
It turns out E is also closed. If it is not closed, then it has an accumulation point z /∈ E by
definition. Then we can pick a sequence of points (xn) in E converging to z. But (xn) has
a subsequence converging to a point in E . Since (xn) converges to z, all subsequences
of (xn) converge to z as well, so z ∈ E , contradicting our assumption that z /∈ E . ■

John M. Weeks Advanced Calculus I 2023-08-02 95 / 188



Theorem

Let E be a set of real numbers. Then E is compact iff E has the Bolzano-Weierstrass
property.

Proof.

(⇐) Say E has the property that every sequence has a subsequence that converges to
a point in E . Then E is bounded;

if E is unbounded we can choose a sequence that
diverges to infinity, and no subsequence of that sequence can even converge.
It turns out E is also closed. If it is not closed, then it has an accumulation point z /∈ E by
definition. Then we can pick a sequence of points (xn) in E converging to z. But (xn) has
a subsequence converging to a point in E . Since (xn) converges to z, all subsequences
of (xn) converge to z as well, so z ∈ E , contradicting our assumption that z /∈ E . ■

John M. Weeks Advanced Calculus I 2023-08-02 95 / 188



Theorem

Let E be a set of real numbers. Then E is compact iff E has the Bolzano-Weierstrass
property.

Proof.

(⇐) Say E has the property that every sequence has a subsequence that converges to
a point in E . Then E is bounded; if E is unbounded we can choose a sequence that
diverges to infinity, and no subsequence of that sequence can even converge.

It turns out E is also closed. If it is not closed, then it has an accumulation point z /∈ E by
definition. Then we can pick a sequence of points (xn) in E converging to z. But (xn) has
a subsequence converging to a point in E . Since (xn) converges to z, all subsequences
of (xn) converge to z as well, so z ∈ E , contradicting our assumption that z /∈ E . ■

John M. Weeks Advanced Calculus I 2023-08-02 95 / 188



Theorem

Let E be a set of real numbers. Then E is compact iff E has the Bolzano-Weierstrass
property.

Proof.

(⇐) Say E has the property that every sequence has a subsequence that converges to
a point in E . Then E is bounded; if E is unbounded we can choose a sequence that
diverges to infinity, and no subsequence of that sequence can even converge.
It turns out E is also closed. If it is not closed, then it has an accumulation point z /∈ E by
definition.

Then we can pick a sequence of points (xn) in E converging to z. But (xn) has
a subsequence converging to a point in E . Since (xn) converges to z, all subsequences
of (xn) converge to z as well, so z ∈ E , contradicting our assumption that z /∈ E . ■

John M. Weeks Advanced Calculus I 2023-08-02 95 / 188



Theorem

Let E be a set of real numbers. Then E is compact iff E has the Bolzano-Weierstrass
property.

Proof.

(⇐) Say E has the property that every sequence has a subsequence that converges to
a point in E . Then E is bounded; if E is unbounded we can choose a sequence that
diverges to infinity, and no subsequence of that sequence can even converge.
It turns out E is also closed. If it is not closed, then it has an accumulation point z /∈ E by
definition. Then we can pick a sequence of points (xn) in E converging to z. But (xn) has
a subsequence converging to a point in E .

Since (xn) converges to z, all subsequences
of (xn) converge to z as well, so z ∈ E , contradicting our assumption that z /∈ E . ■

John M. Weeks Advanced Calculus I 2023-08-02 95 / 188



Theorem

Let E be a set of real numbers. Then E is compact iff E has the Bolzano-Weierstrass
property.

Proof.

(⇐) Say E has the property that every sequence has a subsequence that converges to
a point in E . Then E is bounded; if E is unbounded we can choose a sequence that
diverges to infinity, and no subsequence of that sequence can even converge.
It turns out E is also closed. If it is not closed, then it has an accumulation point z /∈ E by
definition. Then we can pick a sequence of points (xn) in E converging to z. But (xn) has
a subsequence converging to a point in E . Since (xn) converges to z, all subsequences
of (xn) converge to z as well, so z ∈ E , contradicting our assumption that z /∈ E . ■

John M. Weeks Advanced Calculus I 2023-08-02 95 / 188



x

y

1 2 3 4 5 6

0.5

1

1.5

Let’s return to the function picture we saw at the beginning of Chapter 2. What we were
introducing was an ε-δ definition of a limit.

Like sequences, we need something to be
satisfied for any ε-window around our limiting value. For sequences, we need to go far
enough along the x-axis to find an N such that any n ≥ N would be in this ε-window. This
makes sense since we are finding limits as n→∞. However, here we are finding a limit
as x approaches a finite value. This means that, as x approaches our finite value of 2 in a
δ-window, our y -values must be similarly approaching 1

2 .
https://www.desmos.com/calculator/iejhw8zhqd
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This means that, as x approaches our finite value of 2 in a δ-window, our y -values must
be similarly approaching 1

2 . Can you think of a way we could do this with sequences?

A
picture is worth a thousand words :) but we will use words anyway because it will help us
prove strong theorems.
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The ε-δ Definition of a Limit

Definition

Let f : [a, b] → R be a function and let x0 ∈ [a, b].

Then we write limx→x0 f (x) = L if for
every ε > 0 there is a δ > 0 such that

|f (x)− L| < ε

whenever 0 < |x − x0| < δ.

Note that the definition prohibits x from equalling x0 in the calculation.This is because a
limit doesn’t look at the function value at the point itself - only the values surrounding the
point.

f ′(x0) := lim
x→x0

f (x)− f (x0)

x − x0
.
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Theorem: limx→5(10x − 11) = 39.
Proof:

Let ε > 0.
Choose δ = ε

10 .
Then whenever 0 < |x − 5| < δ, we have
|x − 5| < ε

10 ⇒ 10|x − 5| < ε⇒
|(10x − 11)− 39| < ε, as desired.

Proof Idea: We want to use the definition of
the limit to prove that direct substitution
works for this function.
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|10x − 50| < ε. We want to aim with
something dealing with |x − 5|.
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Theorem: limx→3 x2 = 9.
Proof: Let ε > 0.

Choose δ = min{1, ε7}.

Then whenever 0 < |x − 3| < δ, we have
|x − 3| < 1, so |x + 3| ≤ |x − 3|+ |6| < 7.

Hence |x2 − 9| = |x − 3||x + 3| < 7|x − 3|.

Since |x − 3| < ε7 , |x2 − 9| < ε as desired.
—
Notably, all of the functions we have chosen
to evaluate so far are continuous functions.
We know but have not proven that direct
substitution gives their limits. So we wish to
define continuous functions so we can use
this functionality. To do this, it is useful to
give one more definition of a limit.

Proof Idea: Our previous proof seemed to
work because we could simply “factor out a
10". All linear functions work similarly, but
quadratic functions may require something
different.
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can control how big or small x becomes.
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big can |x + 3| be?
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The Sequential Definition of a Limit of Functions

Definition

Let f : [a, b] → R be a function and let x0 ∈ [a, b].

Then we write limx→x0 f (x) = L if for
every sequence (en) of points with en ̸= x0 for all n and en → x0 as n→∞,

lim
n→∞

f (en) = L.

We have now defined the same notion of a functional limit in two different ways. In order
for what we have just done to make sense, these two definitions must be equivalent. We
prove that now.
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Proof that Our Two Definitions of Limit are Equivalent.

First suppose limx→x0 f (x) = L by our ε-δ definition.

Let (en) be a sequence never
equalling x0 that converges to x0. Fix ε > 0. By our ε-δ definition, there exists δ > 0
such that |f (x) − L| < ε whenever 0 < |x − x0| < δ. Since en → x0, there exists an N
such that n ≥ N implies |en − x0| < δ. Hence for n ≥ N, |f (en)− L| < ε, as requested in
our sequential definition.

Now suppose L is not the limit of f (x) as x → x0 according to the ε-δ definition. We
negate the statement of the definition: we are saying there is some ε > 0 such that, for
all δ > 0, there is some x where 0 < |x − x0| < δ such that |f (x) − L| ≥ ε. Fix this ε
and let δn = 1

n . Let xn be the point guaranteed by the negation above. Then xn ̸= x0,
|xn − x0| < 1

n , and |f (xn) − L| ≥ ε. Note the sequence (xn) converges to x0, yet (f (xn))
does not converge to L. This is the negation of the sequential definition of limit. So we
are done. ■
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Limit Laws, Revisited

Thanks to this second definition, a lot of our laws for sequences carry directly over to
functions. For example:

Theorem

Suppose that limx→x0 f (x) = L. Then the number L is unique; no other number has this
same property.

Proof.

Suppose limx→x0 = L and also limx→x0 = L1. We want to show L = L1. By the sequential
definition of the limit, for any sequence (en) where en ̸= x0 and en → x0, f (en) → L and
f (en) → L1. Fix one such sequence (en). Then since sequential limits are unique, the
limits of f (en) must be the same. So L = L1. ■
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Similarly, if limx→x0 f (x) and limx→x0 g(x) exist for functions f , g : E → R, then we have the
following:

If C ∈ R, limx→x0 Cf (x) = C (limx→x0 f (x)).
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Composition of Functions

The following is NOT necessarily true!

Very Absolutely Not Necessarily True Statement

Let f , g : E → R be functions, and let limx→x0 g(x) = L.

Then limx→x0 f (g(x)) = f (L).

A Simple Counterexample.

Let f (x) =

{
1 x > 0
0 x ≤ 0

. Let g(x) = x ; then limx→0 g(x) = 0.Note f (g(x)) = f (x). But

limx→0 f (g(x)) = limx→0 f (x) does not exist; we have the one-sided limits of f at x = 0
are limx→0+ f (x) = 1 and limx→0− f (x) = 0, which do not equal. ■

The issue is that f is discontinuous at x . That is, even if we take a sequence xn → x , f (xn)
does not necessarily converge to f (x).
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Definition (Sequential Definition of Continuity)

Let f : (a, b) → R be a function, and let x0 ∈ (a, b). We say that f is continuous at x0 if
limx→x0 f (x) = f (limx→x0 x) = f (x0).

This notion of “passing a limit through a function" is very common - once we prove certain
functions are continuous, this will help us calculate limits much more quickly.
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Theorem

Let F be a function that is continuous at the point L. Then if limx→x0 f (x) = L, we have

lim
x→x0

F (f (x)) = F
(

lim
x→x0

f (x)
)

= F (L).

John M. Weeks Advanced Calculus I 2023-08-02 106 / 188



Definition (Sequential Definition of Continuity)

Let f : (a, b) → R be a function, and let x0 ∈ (a, b). We say that f is continuous at x0 if
limx→x0 f (x) = f (limx→x0 x) = f (x0).

This notion of “passing a limit through a function" is very common - once we prove certain
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Definition (ε-δ Definition of Continuity)

Let f : [a, b]→ R be a function and let x0 ∈ [a, b]. Then we say that f is continuous at x0
if, for all ε > 0, there exists a δ > 0 such that, whenever |x − x0| < δ, |f (x)− f (x0)| < ε.
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Examples of Continuous Functions

Let’s begin by finding some examples of continuous functions. Remember, a function is
continuous if limx→x0 f (x) = f (x0).

Power functions and root functions x t for t ∈ Q ∩ [0,∞). This is due to the power and
quotient rules for limits.
Polynomials a0 + a1x + · · ·+ anxn. This is due to the sum and difference rules for
limits.
Rational functions p(x)

q(x) for polynomials p, q for x in their domain.

The exponential function ex . This is due to its Taylor series (and some extra 410-level
math). ex = 1 + x + x2

2! +
x3

3! +
x4

4! + · · · . Similarly, ln(x) is continuous.
Trigonometric functions and inverse trigonometric functions on their respective
domains (for similar reasons to ex ).
The composition of these functions on the intersection of their domains (we will prove
this later, but you may have a hint as to why).
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What about some interesting non-examples?

The characteristic function of Q, 1Q(x) :=

{
1 x ∈ Q
0 x /∈ Q

.
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The Dirichlet function, f (x) =

{
0 x ∈ [0, 1] \Q, x = 0
1
q x = p

q , gcd(p, q) = 1
.
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True or False? The characteristic function 1Q is discontinuous everywhere. True.
True or False? The Dirichlet function f is discontinuous everywhere. False. Where is it
discontinuous? Only at rational points.
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Lemma

A finite set in [0, 1] is not dense in [0, 1].

Proof that f is Continuous Only at Qc.

First, we show that f is discontinuous at any rational point Q. Let q ∈ Q and δ > 0. Then
(q − δ, q + δ) contains an irrational point. Fix ε := f (q). Then for all δ > 0, there is a
(irrational) point x such that |x − q| < δ and yet |f (x)− f (q)| = |f (q)| ≥ f (q).
Now let z ∈ [0, 1] \ Q be irrational, and let ε > 0. Note that the set Sn := {x ∈ [0, 1] :
f (x) ≥ 1

n} has finite cardinality regardless of our choice of n. (Why?) Choose an n such
that 1

n < ε (Archimedean Property). Then since |Sn| is finite, it is not dense in [0, 1]. That
means there exists a δ > 0 such that (z − δ, z + δ) does not contain a point of Sn. By
definition of Sn, this means that |f (x)| < 1

n < ε for all x such that |x − z| < δ. This is the
ε-δ definition of continuity of f at z. ■
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Question: what is lim supx→1− 1Q?

1 - we can take a sequence of rationals qn
approaching 1 from the left; then 1Q(qn) = 1 for all n.So our sequence is (1, 1, 1, . . . ),
which approaches 1.
Question: what is lim infx→1− 1Q? 0 - we can take a sequence of irrationals zn
approaching 1 from the left and proceed similarly.
This is another way to say that 1Q is not continuous at the point 1. We can employ the
same argument for any point in [0, 1]. It’s useful to think about how this tool could help us
with the Dirichlet function as well.

John M. Weeks Advanced Calculus I 2023-08-02 111 / 188



Question: what is lim supx→1− 1Q? 1 - we can take a sequence of rationals qn
approaching 1 from the left; then 1Q(qn) = 1 for all n.

So our sequence is (1, 1, 1, . . . ),
which approaches 1.
Question: what is lim infx→1− 1Q? 0 - we can take a sequence of irrationals zn
approaching 1 from the left and proceed similarly.
This is another way to say that 1Q is not continuous at the point 1. We can employ the
same argument for any point in [0, 1]. It’s useful to think about how this tool could help us
with the Dirichlet function as well.

John M. Weeks Advanced Calculus I 2023-08-02 111 / 188



Question: what is lim supx→1− 1Q? 1 - we can take a sequence of rationals qn
approaching 1 from the left; then 1Q(qn) = 1 for all n.So our sequence is (1, 1, 1, . . . ),
which approaches 1.

Question: what is lim infx→1− 1Q? 0 - we can take a sequence of irrationals zn
approaching 1 from the left and proceed similarly.
This is another way to say that 1Q is not continuous at the point 1. We can employ the
same argument for any point in [0, 1]. It’s useful to think about how this tool could help us
with the Dirichlet function as well.

John M. Weeks Advanced Calculus I 2023-08-02 111 / 188



Question: what is lim supx→1− 1Q? 1 - we can take a sequence of rationals qn
approaching 1 from the left; then 1Q(qn) = 1 for all n.So our sequence is (1, 1, 1, . . . ),
which approaches 1.
Question: what is lim infx→1− 1Q?

0 - we can take a sequence of irrationals zn
approaching 1 from the left and proceed similarly.
This is another way to say that 1Q is not continuous at the point 1. We can employ the
same argument for any point in [0, 1]. It’s useful to think about how this tool could help us
with the Dirichlet function as well.

John M. Weeks Advanced Calculus I 2023-08-02 111 / 188



Question: what is lim supx→1− 1Q? 1 - we can take a sequence of rationals qn
approaching 1 from the left; then 1Q(qn) = 1 for all n.So our sequence is (1, 1, 1, . . . ),
which approaches 1.
Question: what is lim infx→1− 1Q? 0 - we can take a sequence of irrationals zn
approaching 1 from the left and proceed similarly.

This is another way to say that 1Q is not continuous at the point 1. We can employ the
same argument for any point in [0, 1]. It’s useful to think about how this tool could help us
with the Dirichlet function as well.

John M. Weeks Advanced Calculus I 2023-08-02 111 / 188



Question: what is lim supx→1− 1Q? 1 - we can take a sequence of rationals qn
approaching 1 from the left; then 1Q(qn) = 1 for all n.So our sequence is (1, 1, 1, . . . ),
which approaches 1.
Question: what is lim infx→1− 1Q? 0 - we can take a sequence of irrationals zn
approaching 1 from the left and proceed similarly.
This is another way to say that 1Q is not continuous at the point 1.

We can employ the
same argument for any point in [0, 1]. It’s useful to think about how this tool could help us
with the Dirichlet function as well.

John M. Weeks Advanced Calculus I 2023-08-02 111 / 188



Question: what is lim supx→1− 1Q? 1 - we can take a sequence of rationals qn
approaching 1 from the left; then 1Q(qn) = 1 for all n.So our sequence is (1, 1, 1, . . . ),
which approaches 1.
Question: what is lim infx→1− 1Q? 0 - we can take a sequence of irrationals zn
approaching 1 from the left and proceed similarly.
This is another way to say that 1Q is not continuous at the point 1. We can employ the
same argument for any point in [0, 1].

It’s useful to think about how this tool could help us
with the Dirichlet function as well.

John M. Weeks Advanced Calculus I 2023-08-02 111 / 188



Question: what is lim supx→1− 1Q? 1 - we can take a sequence of rationals qn
approaching 1 from the left; then 1Q(qn) = 1 for all n.So our sequence is (1, 1, 1, . . . ),
which approaches 1.
Question: what is lim infx→1− 1Q? 0 - we can take a sequence of irrationals zn
approaching 1 from the left and proceed similarly.
This is another way to say that 1Q is not continuous at the point 1. We can employ the
same argument for any point in [0, 1]. It’s useful to think about how this tool could help us
with the Dirichlet function as well.

John M. Weeks Advanced Calculus I 2023-08-02 111 / 188



Properties of Continuous Functions

Theorem (Sum/Difference/Product/Quotient Rules for Continuous Functions)

Let f , g : A → R and let c ∈ R.

Suppose f , g are continuous at x0 ∈ A. Then cf , f + g,
and fg are continuous at x0.Furthermore, if g(x0) ̸= 0, then f/g is continuous at x0.

Proof.

Exercise. :) ■

Theorem (Composition Rule for Continuous Functions)

Let f : A → R, g : B → R and suppose that f (A) ⊂ B. Suppose that f is continuous at a
point x0 ∈ A and that g is continuous at the point y0 = f (x0) ∈ B. Then the composition
function g ◦ f : A→ R is continuous at x0.
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Uniform Continuity

Let’s write the definition of continuity one more time. We will make a slight change to the
domain for a future application.

Definition (ε-δ Definition of Continuity on an Interval I)

Let f : I → R for an interval I ⊂ R. Then we say that f is continuous on I if, for all x0 ∈ I
and ε > 0, there exists a δ > 0 such that, whenever |x − x0| < δ, |f (x)− f (x0)| < ε.

In quantifiers,

∀x0 ∈ I ∀ε > 0 ∃δ > 0 ∋, ∀x ∋ |x − x0| < δ, |f (x)− f (x0)| < ε.

This means that, before proceeding with finding a δ for our proof, we get to work with a
prescribed x0 ∈ I as well as some ε > 0 (as long as these are arbitrary prescriptions).
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Theorem: f (x) = 10x − 11 is continuous at x = 5.
Proof: Let ε > 0.
Choose δ = ε

10 .
Then whenever |x − 5| < δ, we have
|x − 5| < ε

10 ⇒ 10|x − 5| < ε⇒
|(10x − 11)− 39| < ε, as desired. (Note
f (5) = 39.)

Theorem: f (x) = x2 is continuous at x = 3.
Proof: Let ε > 0.
Choose δ = min{1, ε7}.
Then whenever 0 < |x − 3| < δ, we have
|x − 3| < 1, so |x + 3| ≤ |x − 3|+ |6| < 7.
Hence |x2 − 9| = |x − 3||x + 3| < 7|x − 3|.
Since |x − 3| < ε7 , |x2 − 9| < ε as desired.
(Note f (3) = 9.)

Let’s observe the proof that a familiar
function is continuous at a familiar point.
The proof itself looks nearly identical - we
only removed the condition that 0 < |x − 5|.
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adaptation. Notice that we had to engage
the problem slightly differently than the
previous one. Why?
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Here’s another proof with a similar
adaptation. Notice that we had to engage
the problem slightly differently than the
previous one. Why?

Would we have to do something different
with either problem should x = 4?
The 10x − 11 problem can be left
untouched - our choice of δ does not
depend on our choice of x . But our x2

problem must be changed, since our choice
of δ depends on x .
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Continuity of f at x0 ∈ I:

∀x0 ∈ I ∀ε > 0 ∃δ > 0 ∋, ∀x ∋ |x − x0| < δ, |f (x)− f (x0)| < ε.

If we move the quantifier for x0 so that our choice of δ must work for all x0, we get a new
definition of note:
Uniform continuity of f on I:

∀ε > 0 ∃δ > 0 ∋, ∀x0 ∈ I ∀x ∈ I ∋ |x − x0| < δ, |f (x)− f (x0)| < ε.

Definition

Let f be defined on a set A ⊂ R. We say that f is uniformly continuous on A if for every
ε > 0 there exists δ > 0 such that, if x , y ∈ A and |x − y | < δ, then |f (x)− f (y)| < ε.

Notice that this is the property of a function and a set, rather than of a function and a point.
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To see the usefulness of this, let’s start with making a claim about the
boundedness of certain functions.

Notice that the function f (x) = 1
x is continuous on the

interval (0, 1). It is also unbounded on the interval - we are about to make a connection
here with the fact that it is not uniformly continuous on the interval.

Theorem

If a function f is uniformly continuous on a bounded interval I, then f is bounded on I.

Proof.

Let a := min I, b := max I. By uniform continuity, we can choose a δ > 0 such that
|f (y)− f (x)| < 1 whenever x , y ∈ I and |x − y | < δ. Divide I in the following way: letting
a = x0, we can find a finite set (xi)

n−1
i=1 such that a = x0 < x1 < x2 < · · · < xn−1 < xn = b

where |xi − xi−1| < δ for i ∈ [n]. By our choice of δ, f is bounded on each of the intervals
[xi−1, xi ] ∪ I. Hence f is bounded on their union: the bounds of f are the minimum and
maximum values taken from the collection of infima and suprema on each of the interval
[xi−1, xi ]. ■
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Corollary (Existence of Absolute Max/Min)

Let f be continuous on [a, b]. Then f possesses both an absolute maximum and an
absolute minimum.

Proof.

Let M = sup{f (x) : x ∈ [a, b]}.

We know f is uniformly continuous on [a, b], so f is
bounded and M < ∞. We need to show there is some point z ∈ [a, b] that attains
this supremum - this is how we get a maximum. Even if we cannot find such an z, we
know M is a least upper bound, so there exists an xn ∈ [a, b] such that f (xn) > M − 1

n
(since M − 1

n is not an upper bound). Note a ≤ xn ≤ b is a bounded sequence; by
Bolzano-Weierstrass there is a subsequence (xnk ) converging to x , and a ≤ x ≤ b. Then
f (z) = f (limk→∞ xnk ) = limk→∞ f (xnk ) = M. The proof that f attains an absolute minimum
is similar. ■
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Limits at Infinity

So far we have discussed finite limits that approach finite values. A small consideration
should be made to account for the end behavior of a function, or times when a function
diverges to ∞ or −∞.

Definition

Let S ⊂ R. We say that ∞ is a cluster point of S if for every M ∈ R, there exists an
x ∈ S such that x ≥ M. (Is this equivalent to saying the set S is unbounded? No. Instead
it is equivalent to saying the set is unbounded above.)
Whenever S is unbounded below, we say −∞ is a cluster point of S.
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So why distinguish “cluster points" in the first place?

We want to emphasize that we can
take a limit of points in S that heads toward the cluster point. (The points “cluster around"
∞.)

Definition

Let f : S → R be a function where∞ is a cluster point of S. We say

lim
x→∞

f (x) = L

if for all ε > 0 there exists an M ∈ R such that

|f (x)− L| < ε

whenever x ∈ S and x ≥ M.

This is reminiscent of our definition of a sequential limit.
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A question whose answer will be useful to us later: what does it mean for c ∈ R to be a
cluster point of a set S ⊂ R?

It means there is a sequence in S that converges to that
point... that is not eventually the constant sequence (c, c, c, . . . ).

Definition

For a set S, we say c ∈ C is a cluster point of S if there exists a sequence (sn) ⊂ S that
converges to c such that sn ̸= c for all n.
Equivalently, for all ε > 0 the set (c − ε, c + ε) ∩ S must include a point other than c.

We will return to this discussion when we discuss continuity and topology.
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Theorem: limx→∞ sin(πx)

does not exist.
Proof:

Let ε = 1.
If x = 2n + 1/2 for any n ∈ N, we have
f (x) = sin(2nπ+ π2 ) = 1.
However, if x = 2n + 3/2 for any n ∈ N, we
have f (x) = sin(2nπ+ 3π

2 ) = −1.
For any L > 0, M ∈ R, find an n such that
2n + 3/2 > M. Then |f (2n + 3/2)− L| > 1.
We can do a similar thing for L < 0,M ∈ R
by finding an n such that 2n + 1/2 > M.
Since this is true for any n ∈ N, there is no
M ∈ R such that x ≥ M implies
|f (x)− L| < 1 for any L.

Proof Idea:
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proving the convergence of a sequence?
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Recall that sequences are really functions
with domain N. Here our functions have a
much bigger domain.
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What is different about this proof from
proving the convergence of a sequence?
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with domain N. Here our functions have a
much bigger domain.

This makes a difference because the
sequence sin(πn) converges to 0 as
n→∞.
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Lemma

Suppose f : S → R is a function,∞ is a cluster point of S ⊂ R, and L ∈ R. Then

lim
x→∞

f (x) = L iff lim
n→∞

f (xn) = L

for all sequences (xn) in S such that limn→∞ xn =∞.

Proof.

The proof is similarly conducted to how one proves the statement adapted as x → c. ■
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Monotonic Functions

Definition

We say a function f is increasing [resp. decreasing] on an interval I if x1 < x2 ⇒
f (x1) ≤ f (x2) [resp. f (x1) ≥ f (x2)]. We say the function is strictly increasing [resp.
strictly decreasing] on I if x1 < x2 ⇒ f (x1) < f (x2) [resp. f (x1) > f (x2)].

There are many interesting things about functions that only travel upward or downward.
Here is one of them:

Proposition

Every bounded function f : I → R can be written as the sum of two monotonic functions
g, h : I → R, one increasing and one decreasing.

Consider the functions g = f+|f |
2 and h = f−|f |

2 .
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Theorem

Let I ⊂ R be an interval and f : I → R be monotone. Then f has at most countably many
discontinuities.

First Proof.

WLOG let f be increasing. From our reading we recall that monotonic functions only have
jump discontinuities. If x0 is a point of discontinuity on I, then the interval

I(x0) =

(
lim

x→x−
0

f (x), lim
x→x+

0

f (x)

)
contains at most one point in the range of f (that point would be f (x0) should it exist).
Since f is monotonic, these intervals are also disjoint (namely, if x0 < x1, limx→x+

0
f (x) ≤

limx→x−
1

f (x)).
Let (xj)j∈J be all the points at which f is discontinuous. Each interval Ij caused by this
continuity at a point xj ∈ I as positive length. Since Q is dense in R, each Ij has a distinct
rational point contained in it. That rational point is not in any other interval since the
intervals are disjoint.
Let ϕ : J → Q be the function mapping each element of the index set j ∈ J to the
rational point in the interval Ij . Then by our discussion ϕ is injective. So |J| ≤ |Q| and J is
countable. ■
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1

f (x)).
Let (xi)i∈I be the points at which f is discontinuous. For each xi , let ℓi be the length of
this interval I(xi). Note that ℓi > 0.
Let Sn := {i : ℓi ≥ 1

n}. Note that
⋃

n∈N Sn = I. Note that each Sn is also finite! Otherwise,
since the range of f has length greater than that of the combined lengths of Ii , f is
unbounded.
Note the collection (Sn)n∈N is countable. A countable union of countable sets is count-
able, and these sets are in fact finite. So

⋃
n∈N Sn = I is countable. ■
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Proposition

If I ⊂ R is an interval and f : I → R is strictly monotone, then the inverse f−1 : f (I)→ I is
continuous.

Proof Idea.

WLOG let f be strictly increasing. Taking any two points on the range of f , f (x) and f (y),
such that f (x) < f (y), we must have x < y . Hence f−1(f (x)) < f−1(f (y)), which by
definition implies f−1 is strictly increasing as well. So our inverse function can only have
jump discontinuities. We will attempt to prove there can be none.
The issue arises from the fact that f is not itself continuous, so f (I) need not be an
interval. To this end, we ask if c ∈ f (I) is a cluster point of the domain. (If it’s not, no part
of the rest of the set is close to it, so we called it an isolated point.) Whatever definition
of continuity you prefer shows the function is continuous at this point.
Intuitively, the reason there can be no jump discontinuities for cluster points is that the
domain of f (now the range of f−1) has no gaps. This is formalized in Lebl. ■
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Revisiting the Derivative

Definition

Let f be defined on an interval I and let x0 ∈ I. The derivative of f at x0, denoted by
f ′(x0), is defined as

f ′(x0) = lim
x→x0

f (x)− f (x0)

x − x0
,

provided the limit exists or is infinite.

If f ′(x0) is finite we say that f is differentiable at x0. If f is differentiable at every point of a
set E ⊂ I, we say f is differentiable on E . When E is all of I, we say f is a differentiable
function.
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Exercise: Let f (x) = x2 on R and let x0 be a real number. Find f ′(x0).

We substitute: f ′(x0) = limx→x0

x2−x2
0

x−x0
= limx→x0

(x−x0)(x+x0)
x−x0

= limx→x0 x + x0 = 2x0.

Exercise: Let f (x) = |x |. Find f ′(0).

Note |x |−|0|
x = limx→0

|x |
x =

{
1 x > 0
−1 x < 0

.Then the left-hand derivative

f ′−(0) = limx→x0−
|x |
x = −1 while the right-hand derivative f ′+(0) = limx→x0+

|x |
x = 1. Since

f ′−(0) ̸= f ′+(0), f is not differentiable at 0.

Exercise: Suppose f is a function such that |f (x)| ≤ x2 for all x ∈ I. Find f ′(0).

We have |f (0)| ≤ 02, so f (0) = 0. Note f (x)−f (0)
x−0 = f (x)

x . Then
∣∣∣ f (x)x

∣∣∣ ≤ ∣∣∣ x2

x

∣∣∣ = |x |.
Then limx→0

∣∣∣ f (x)x

∣∣∣ ≤ limx→0 |x | = 0. This proves f ′(0) = 0.
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Exercise: Let f (x) = x2 on R and let x0 be a real number. Find f ′(x0).

We substitute: f ′(x0) = limx→x0
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x−x0
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f ′−(0) ̸= f ′+(0), f is not differentiable at 0.
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Our example f (x) = |x | showed that a continuous function need not be
differentiable.

However, the converse is true:

Theorem

Let f : (a, b) → R be a function and let x ∈ (a, b). If f is differentiable at x0, then f is
continuous at x0.

Proof.

Recall: we want to show limx→x0 f (x) = f (x0). So let’s look at f (x)− f (x0):

f (x)− f (x0) =

(
f (x)− f (x0)

x − x0

)
(x − x0).

Taking the limit as x → x0 on both sides:

lim
x→0

f (x)− f (x0) = f ′(x0) · lim
x→x0

(x − x0).

The right-hand side equals 0 since f ′(x0) exists and is finite. So limx→0 f (x) = f (x0). ■
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Derivative Rules

Of course, we want to employ the rules we know for derivatives as quickly as possible.
Let’s go through some quick ones to start out:

Theorem (Sum/Constant Multiple Rules)

Let f , g be defined on an interval I and let x0 ∈ I. If f , g are differentiable at x0 then so
are cf and f + g. Furthermore, (cf )′(x0) = cf ′(x0), and (f + g)′(x0) = f ′(x0) + g′(x0).

Proof.

Exercise. ■
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Theorem (Product Rule)

With I, f , g, x0 as in the previous theorem, fg is differentiable at x0. Furthermore,
(fg)′(x0) = f (x0)g′(x0) + f ′(x0)g(x0).

Proof.

Let h = fg. We go through the steps to calculate the derivative and employ a trick similar
to one we’ve used before: h(x) − h(x0) = f (x)g(x) − f (x0)g(x0) = f (x)[g(x) − g(x0)] +
g(x0)[f (x)− f (x0)].
So h(x)−h(x0)

x−x0
= f (x)g(x)−g(x0)

x−x0
+ g(x0)

f (x)−f (x0)
x−x0

.

Finally, taking limits as x → x0, note that g(x)−g(x0)
x−x0

→ g′(x0) and f (x)−f (x0)
x−x0

→ f ′(x0).
So we get h′(x0) = limx→x0 f (x)g′(x0) + g(x0)f ′(x0), hence the theorem. ■
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Theorem

With I, f , g, x0 as in previous theorems, if g(x0) ̸= 0, then f
g is differentiable at x0. Fur-

thermore, ( f
g )

′(x0) =
g(x0)f ′(x0)−f (x0)g′(x0)

(g(x0))2 .

Proof.

Let h = f
g . Then h(x)−h(x0)

x−x0
=

f
g (x)−

f
g (x0)

x−x0
. It’s okay to multiply by g(x)g(x0)

g(x)g(x0)
- we know

g(x0) ̸= 0, and since g is continuous g(x) ̸= 0 in some neighborhood around x0 as well.
(Why?)
So we get

g(x0)f (x)− g(x)f (x0)

g(x)g(x0)(x − x0)
=

1
g(x)g(x0)

[
g(x0)

(
f (x)− f (x0)

x − x0

)
− f (x0)

(
g(x)− g(x0)

x − x0

)]
.

Letting x → x0, we get the desired result. ■
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Theorem (Chain Rule)

Let I1, I2 be intervals. Suppose f : I1 → I2 is differentiable at x0 ∈ I1 and g : I2 → R is
differentiable at f (x0). Then the composite function h = g ◦ f is differentiable at x0, and
h′(x0) = g′(f (x0))f ′(x0).

Proof Idea.

The basic idea is to take the derivative definition and multiply by f (x)−f (x0)
f (x)−f (x0)

:

lim
x→0

h(x)− h(x0)

x − x0
= lim

f (x)→f (0)

g(f (x))− g(f (x0))

f (x)− f (x0)
lim
x→0

f (x)− f (x0)

x − x0
.

The issue arises when f (x)− f (x0) = 0 too many times. How many times is too many? If
for any sequence (xn) of distinct points, there are only finitely many n such that f (xn) =
f (x0), then there is a x-value closest to x0 where f (x) = f (x0). But it’s still a distance
away, and the limit doesn’t mind any behavior of the function away from x0. ■
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Proof Idea, Continued.

So let’s assume there is a sequence (xn) of distinct points such that, for infinitely many n,
f (xn) = f (x0).

We can then show that f ′(x0) = 0. (Why? Hint: use sequential definition of
function limit.) So the proof is complete if we can then show h′(x0) = 0.

Take an arbitrary sequence (xn) converging to x0. For all n, either f (xn) = f (x0) or
f (xn) ̸= f (x0). If f (xn) = f (x0), then g(f (xn)) = g(f (x0)), and so g(f (xn))−g(f (x0))

xn−x0
= 0. If

f (xn) ̸= f (x0), then we can multiply our derivative by f (xn)−f (x0)
xn−x0

to get

g(f (x))− g(f (x0))

f (x)− f (x0)

f (xn)− f (x0)

xn − x0
.

Observing that the second factor converges to 0 as n → ∞ since f ′(x0) = 0, we are
done. ■
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Theorem (Power Rule, Kind Of)

Let n ∈ N. Then f (x) = xn is differentiable, and f ′(x) = nxn−1.

Proof.

Exercise. ■

Theorem (Power Rule, More Kind Of)

Let n ∈ N. Then f (x) = x1/n is differentiable on the interior of its domain and equals
f (x) = 1

n x1/n−1.

Proof.

We use the Inverse Function Theorem to claim an inverse for xn exists, which we
cannot prove now - however, the proof will not rely on the Power Rule, so this is okay.
Write g(x) = x1/n and f (x) = xn. Then g(f (x)) = x , so by the Chain Rule g′(f (x))f ′(x) =
1. Hence g′(xn) = 1

nxn−1 . So g′(x) = g′( n
√

xn) = 1
nx (n−1)/n , as desired. ■
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Theorem (Power Rule, Even More Kind Of)

Let f (x) = xm/n for integers m/n. Then f is differentiable on the interior of its domain,
and f ′(x) = m

n x
m
n −1.

Proof.

Exercise. ■
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Maxima and Minima

Derivatives have a few main applications: the existence of local maxima and minima, the
Mean Value Theorem, L’Hôpital’s Rule, and Taylor polynomials.

Let’s discuss each one.

Theorem

Let f be defined on an interval (a, b). If f has a local extremum at a point x0 in (a, b) and
f is differentiable at x0, then f ′(x0) = 0.

Proof.

Suppose f has a local maximum at x0 in I◦. Then there is some δ > 0 such that
[x0 − δ, x0 + δ] ⊂ I and f (x) ≤ f (x0) for each x ∈ [x0 − δ, x0 + δ].
Note f (x)−f (x0)

x−x0
≤ 0 for x ∈ (x0, x0 + δ) and f (x)−f (x0)

x−x0
≥ 0 for x ∈ (x0 − δ, x0).

Hence f ′+(x0) ≤ 0 and f ′−(x0) ≥ 0. If f ′(x0) exists, then these one-sided limits are equal
to it, so f ′(x0) = 0. ■
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If f ′(x0) exists, then these one-sided limits are equal
to it, so f ′(x0) = 0. ■
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Maxima and Minima
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Mean Value Theorem

Theorem (Rolle’s Theorem)

Let f be continuous on [a, b] and differentiable on (a, b). If f (a) = f (b) then there exists
c ∈ (a, b) such that f ′(c) = 0.

Proof.

If f is constant on [a, b] then f ′(x) = 0 on the whole interval.
Suppose f is not constant. Then since f is continuous on the compact interval [a, b], it
achieves a maximum value M and minimum value m on [a, b]. Since f is not constant,
one of the values differs from f (a) or f (b). Say M > f (a). Choose c ∈ (a, b) such that
f (c) = M. By our previous theorem, f ′(c) = 0. ■
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Theorem (Mean Value Theorem)

Suppose that f is a continuous function on the closed interval [a, b] and differentiable on
(a, b). Then there exists c ∈ (a, b) such that

f ′(c) =
f (b)− f (a)

b − a
.

Proof.

We want to apply Rolle’s Theorem here, which has an easier idea. So we subtract a
function from f so that the endpoints are lined up horizontally.The line connecting (a, f (a))
and (b, f (b)) has slope f (b)−f (a)

b−a , so the formula for the line (by point-slope form) is L(x) =

f (a) + f (b)−f (a)
b−a (x − a).

Let g(x) := f (x) − L(x). Then g is continuous on [a, b], differentiable on (a, b), and
g(b) = g(a) = 0. By Rolle’s Theorem there is some c ∈ (a, b) such that g′(c) = 0. Hence
0 = f ′(c)− L′(c) (why?). So f ′(c) matches the slope of the line L, which is f (b)−f (a)

b−a . ■
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Theorem (Increasing/Decreasing Functions)

Let f be differentiable on an interval I. If f ′(x) ≥ 0 [resp. f ′(x) > 0] for all x ∈ I, then f is
non-decreasing [resp. increasing] on I.

If f ′(x) ≤ 0 [resp. f ′(x) < 0] for all x ∈ I, then f is
non-increasing [resp. decreasing].

Proof.

Let’s start with an interval where f ′(x) ≥ 0; the rest is similar.Let x1, x2 ∈ I where x1 < x2.
Then by the Mean Value Theorem there is some c ∈ (x1, x2) such that

f (x2)− f (x1) = f ′(c)(x2 − x1).

If f ′(c) ≥ 0, This means f (x2) ≥ f (x1). This is the definition of non-decreasing. ■
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L’Hôpital’s Rule

Before giving insight into L’Hôpital’s Rule, we need to generalize the Mean Value
Theorem:

Theorem (Cauchy Mean Value Theorem)

Let f and g be continuous on [a, b] and differentiable on (a, b). Then there exists c ∈
(a, b) such that

[f (b)− f (a)]g′(c) = [g(b)− g(a)]f ′(c).

First, note that if we divided both sides by b − a, this would be as though we multiplied an
instance of the Mean Value Theorem for the function f with another MVT instance for g.

Proof.

This is an exercise, but the hint is to consider the function
ϕ(x) = [f (b)− f (a)]g(x)− [g(b)− g(a)]f (x). ■
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Let’s discuss why L’Hôpital’s Rule should work. Recall:

Theorem (L’Hôpital’s Rule: 0
0 Form)

Suppose that f and g are differentiable in an interval (c, d) containing a except possibly
at a. If limx→a f (x) = 0 = limx→a g(x),

g′(x) ̸= 0 in N, and limx→a
f ′(x)
g′(x) exists, then

limx→a
f (x)
g(x) = limx→a

f ′(x)
g′(x) .

So why is it that this theorem
should be true? It may be use-
ful to think of functions in terms of
their Taylor series approximations
at the point a. Here are the func-
tions 6x + x2 and 3x + 5x3 - their
asymptotic behavior close to x = 0
looks like 6x and 3x respectively. x

y

0.5 1

3

6
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Algebraically speaking, if f (a) = 0 = g(a),

f (x)
g(x)

=
f (x)− f (a)
g(x)− g(a)

=

(
f (x)−f (a)

x−a

)
(

g(x)−g(a)
x−a

) .

Taking a limit as x → a, assuming f ′/g′ is continuous, we get the theorem statement in
L’Hôpital. This is not the way we will prove this theorem, as it assumes too many things
about the functions f and g, like that f (a), g(a) exist, that g(x) ≠ 0 in this neighborhood,
and that f ′/g′ is continuous. However, it is a helpful way to understand the theorem.
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Theorem (L’Hôpital’s Rule: 0
0 Form)

Suppose that f and g are differentiable in a neighborhood N of x = a except possibly
at x = a. If (i,ii) limx→a f (x) = 0 = limx→a g(x), (iii) g′(x) ̸= 0 in N, and (iv) limx→a

f ′(x)
g′(x)

exists, then limx→a
f (x)
g(x) = limx→a

f ′(x)
g′(x) .

Proof.

Let’s begin by defining (or redefining) f and g at x = a to be 0. By (i,ii), this means f and
g are now continuous functions on all of N. We can now apply Cauchy’s Mean Value
Theorem.

Suppose x ∈ N and that a < x . Then there exists c = cx in (a, x) such that [f (x) −
f (a)]g′(cx) = [g(x)− g(a)]f ′(cx). Since f (a) = g(a) = 0, we get f (x)g′(cx) = g(x)f ′(cx).
If we can justify the divisions to get to the equality f (x)

g(x) = f ′(cx )
g′(cx )

, then we can let x
approach a from the right. Notice that cx would also approach a, and get the theorem
statement (at least as a one-sided limit).
To do this we must show g(x) is never zero in N ∩ {x : x > a}. Say g(x) is zero at
some point in this set. Then Rolle’s Theorem applies and there is a point t ∈ (a, x) such
that g′(t) = 0; this contradicts with (iii). Since g′(cx) ̸= 0 by the same hypothesis, these
divisions are valid. The arguments from the other side is similar. ■
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Taylor Polynomials

In Calculus we are introduced to Taylor series as vast improvements on linear
approximations f (x) ≈ f (x0) + f ′(x0)(x − x0). It’s a beautiful result that allows us to find
values of a smooth function based on very local data and limits.

Pn(x) := f (c) + f ′(c)(x − c) +
f ′′(c)

2!
(x − c)2 + · · ·+ f (n)(c)

n!
(x − c)n.

For computational purposes, calculating a limit is not even necessary - we can take a
partial sum of a Taylor series and find a value that is good enough. We call partial sums
of the Taylor series for a function Taylor polynomials. These polynomials also exist for
functions where Taylor series do not. A function need not be infinitely differentiable - it
only need to be differentiable a few times.

John M. Weeks Advanced Calculus I 2023-08-02 146 / 188



Taylor Polynomials

In Calculus we are introduced to Taylor series as vast improvements on linear
approximations f (x) ≈ f (x0) + f ′(x0)(x − x0). It’s a beautiful result that allows us to find
values of a smooth function based on very local data and limits.

Pn(x) := f (c) + f ′(c)(x − c) +
f ′′(c)

2!
(x − c)2 + · · ·+ f (n)(c)

n!
(x − c)n.

For computational purposes, calculating a limit is not even necessary - we can take a
partial sum of a Taylor series and find a value that is good enough. We call partial sums
of the Taylor series for a function Taylor polynomials.

These polynomials also exist for
functions where Taylor series do not. A function need not be infinitely differentiable - it
only need to be differentiable a few times.

John M. Weeks Advanced Calculus I 2023-08-02 146 / 188



Taylor Polynomials

In Calculus we are introduced to Taylor series as vast improvements on linear
approximations f (x) ≈ f (x0) + f ′(x0)(x − x0). It’s a beautiful result that allows us to find
values of a smooth function based on very local data and limits.

Pn(x) := f (c) + f ′(c)(x − c) +
f ′′(c)

2!
(x − c)2 + · · ·+ f (n)(c)

n!
(x − c)n.

For computational purposes, calculating a limit is not even necessary - we can take a
partial sum of a Taylor series and find a value that is good enough. We call partial sums
of the Taylor series for a function Taylor polynomials. These polynomials also exist for
functions where Taylor series do not. A function need not be infinitely differentiable - it
only need to be differentiable a few times.

John M. Weeks Advanced Calculus I 2023-08-02 146 / 188



Taylor Polynomials

In Calculus we are introduced to Taylor series as vast improvements on linear
approximations f (x) ≈ f (x0) + f ′(x0)(x − x0). It’s a beautiful result that allows us to find
values of a smooth function based on very local data and limits.

Pn(x) := f (c) + f ′(c)(x − c) +
f ′′(c)

2!
(x − c)2 + · · ·+ f (n)(c)

n!
(x − c)n.

For computational purposes, calculating a limit is not even necessary - we can take a
partial sum of a Taylor series and find a value that is good enough. We call partial sums
of the Taylor series for a function Taylor polynomials. These polynomials also exist for
functions where Taylor series do not. A function need not be infinitely differentiable - it
only need to be differentiable a few times.

John M. Weeks Advanced Calculus I 2023-08-02 146 / 188



Theorem

Let f possess at least n + 1 derivatives on an open interval I and let c ∈ I. Let Rn(x) =
f (x) − Pn(x), where Pn(x) is the nth Taylor polynomial.

Then for each x ∈ I there exists
z between x and c such that

Rn(x) =
f (n+1)(z)
(n + 1)!

(x − c)n+1.

Before moving onto the proof, let’s see an example to understand this new functionality.
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Exercise: Find an appropriate bound for the error term Rn for the
nth Taylor polynomial of the function f (x) = sin(x) centered at c = 0.

Let’s use a third-degree polynomial to start. Recall f ′(x) = cos(x), f ′′(x) = − sin(x),
f (3)(x) = − cos(x), and f (4)(x) = f (x). So

P3(x) = cos(0)x − sin(0)
2!

x2 − cos(0)
3!

x3 = x − x3

6
.

By our remainder formula, if we wish to use this polynomial to estimate sin(x) on the
interval [−a, a], we know there is some z ∈ [−a, a] such that R3(x) = sin z

4! x4.
Normally we aren’t concerned with exactly what z makes this true - instead, we use the
formula to get an upper bound on the error. For example, since | sin z| ≤ 1, the largest
R3(x) can become on [−a, a] is a4

4! =
a4

24 .
Not only is | sin(x)| ≤ 1; in fact |f (n)(x)| ≤ 1 for all n! So we can successfully bound Rn(x)
with |xn+1|

(n+1)! . If we wished to approximate sin(x) on, say, [−1, 1] up to a certain error, we
could even use this formula to find the lowest degree of Pn we could use to achieve this.
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f (3)(x) = − cos(x), and f (4)(x) = f (x). So

P3(x) = cos(0)x − sin(0)
2!

x2 − cos(0)
3!

x3 = x − x3

6
.

By our remainder formula, if we wish to use this polynomial to estimate sin(x) on the
interval [−a, a], we know there is some z ∈ [−a, a] such that R3(x) = sin z

4! x4.
Normally we aren’t concerned with exactly what z makes this true - instead, we use the
formula to get an upper bound on the error. For example, since | sin z| ≤ 1, the largest
R3(x) can become on [−a, a] is a4

4! =
a4

24 .
Not only is | sin(x)| ≤ 1; in fact |f (n)(x)| ≤ 1 for all n! So we can successfully bound Rn(x)
with

|xn+1|
(n+1)! . If we wished to approximate sin(x) on, say, [−1, 1] up to a certain error, we

could even use this formula to find the lowest degree of Pn we could use to achieve this.
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Proof of Taylor’s Theorem (proof by Lagrange).

Fix x ∈ I. Then there is a number M (depending on x) such that f (x) = Pn(x) + M(x −
c)n+1.

We will have completed our goal if we show M = f (n+1)(z)
(n+1)! for some z between c

and x . (Let’s suppose x > c.)
Define a function g on I by g(t) := f (t) − Pn(t) − M(t − c)n+1 and note that g(x) = 0.
Note Pn(t) is a polynomial of degree ≤ n. So P(n+1)

n = 0. Hence
g(n+1)(t) = f (n+1)(t)− (n + 1)!M (∗).

Note further that, by definition of Pn, f (k)(c) = P(k)
n (c) for k ∈ [n]. Plugging in c = t , we

get g(k)(c) = 0.
So g(x) = 0 and g(c) = 0. Further, g is continuous on [c, x ] and differentiable on (c, x).
By Rolle’s Theorem there is some z ∈ (c, x) such that g′(z1) = 0. Repeat this process:
g′(c) = 0 = g′(z1), so there is a point z2 ∈ (c, z1) such that g′′(z2) = 0.
Continuing, we eventually get zn ∈ (c, zn−1) such that g(n)(zn) = 0. One more application
of Rolle’s gives us a point z ∈ (c, zn) such that g(n+1)(z) = 0. This is our desired z.
Plugging this z in for (∗), we get f (n+1)(z) = (n + 1)!M. ■
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Inverse Function Theorem

We have mentioned inverse functions briefly in this course. Recall that a function
composed with its inverse function in either order comes out to be the function f (x) = x .

Geometrically, taking an inverse involves flipping the original function about the line y = x :

Note that slopes are also inverted on nice domains such as this one. But we run into
issues inverting functions like f (x) = x3. (Why?)
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Lemma

Let I, J ⊂ R. If fI → J is strictly monotone (hence one-to-one), onto, differentiable at
x0 ∈ I, and f ′(x0) ̸= 0, then the inverse f−1 is differentiable at y0 = f (x0) and

(f−1)′(y0) =
1

f ′(f−1(y0))
=

1
f ′(x0)

.

If f is continuously differentiable and f ′ is never zero, then f−1 is continuously differenti-
able.
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Proof Idea.

By our discussion regarding continuity of inverse functions back before discussing de-
rivatives, f has a continuous inverse; let’s call it g : J → I. Pick an x ∈ I; then define
y := f (x).

If x ̸= x0 (and hence y ̸= y0 by strictly monotonic) we get

g(y)− g(y0)

y − y0
=

g(f (x))− g(f (x0))

f (x)− f (x0)
=

x − x0

f (x)− f (x0)
.

The rest comes from checking to ensure our limits as x goes to x0 (for the function f )
translate nicely to limits as y goes to y0 (for the function f−1) so that once can take the
limit. This works nicely since f is continuous (it is differentiable) as is f−1 at this point.
The final statement is true since g must then be differentiable and hence continuous, so
g′(y) = 1

f ′(g(y)) is a composition of continuous functions. ■
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Theorem (Inverse Function Theorem)

Let f : (a, b) → R be a continuously differentiable function, x0 ∈ (a, b) a point where
f ′(x0) ̸= 0. Then there exists an open interval I ⊂ (a, b) with x0 ∈ I, the restriction f |I
is injective with a continuously differentiable inverse g : J → I defined on the interval
J := f (I), and

g′(y) =
1

f ′(g(y))
.

Proof.

Since f is now continuous everywhere, if say f ′(x0) > 0, we can find an interval I =

(x0 − δ, x0 + δ) such that f ′(x) > f ′(x0)
2 for all x ∈ I. Hence f is strictly increasing on I, so

using I as our interval in the above construction and applying our previous lemma, we
are done. ■
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Defining the Riemann (Darboux) Integral

Recall from Calculus I that the Riemann integral of a function f (x) on an interval [a, b] was
calculated as a sum of approximating rectangles:

lim
n→∞

n∑
i=1

f (xi)∆x ,

where ∆x := b−a
n and xi := a + i∆x . This definition of the integral has another formulation

due to Darboux - in fact, the two will look very similar. The presentation that is taught in
this course is a matter of preference - Darboux’s appears to save time and construction,
and the proof style of the theorems will be useful to those continuing through analysis. As
we go through this construction, we will make a few comparisons to Cauchy’s method to
defining the Riemann integral given above.

Definition

A partition P of [a, b] is a set (xi)
n
i=0 ⊂ [a, b] such that a = x0 < x1 < x2 < · · · < xn = b.

(You may recall us using this when discussing uniform continuity.)
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Definition

Given a partition P and a subinterval [xk−1, xk ] of P, let Mk := sup{f (x) : x ∈ [xk−1, xk ]}.

Then the upper sum of f with respect to P is U(f ,P) =
∑n

k=1 Mk (xk − xk−1).
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Definition

Given a partition P and a subinterval [xk−1, xk ] of P, let mk := inf{f (x) : x ∈ [xk−1, xk ]}.
Then the lower sum of f with respect to P is L(f ,P) =

∑n
k=1 mk (xk − xk−1).
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Definition

A partition Q is a refinement of a partition P if Q contains all of the points of P; that is,
P ⊂ Q.
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Definition

A partition Q is a refinement of a partition P if Q contains all of the points of P; that is,
P ⊂ Q. Clearly L(f ,P) ≤ L(f ,Q) and U(f ,P) ≥ U(f ,Q).
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Lemma

(1) Let P be a partition of [a, b]. Then for any function f , L(f ,P) ≤ U(f ,P).

(2) Let P1,P2
be two partitions of [a, b]. Then L(f ,P1) ≤ U(f ,P2).
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(of 1) This comes from the fact that mk = inf{f (x) : x ∈ [xk−1, xk ]} ≤ sup{f (x) : x ∈
[xk−1, xk ]} = Mk .

(of 2)

Let Q = P1 ∪ P2. Then Q is a common refinement of P1 and P2. Hence

L(f ,P1) ≤ L(f , q) ≤ U(f ,Q) ≤ U(f ,P2).

■

John M. Weeks Advanced Calculus I 2023-08-02 156 / 188



Lemma

(1) Let P be a partition of [a, b]. Then for any function f , L(f ,P) ≤ U(f ,P). (2) Let P1,P2
be two partitions of [a, b]. Then L(f ,P1) ≤ U(f ,P2).

Proof.

(of 1) This comes from the fact that mk = inf{f (x) : x ∈ [xk−1, xk ]} ≤ sup{f (x) : x ∈
[xk−1, xk ]} = Mk .

(of 2)

Let Q = P1 ∪ P2. Then Q is a common refinement of P1 and P2. Hence

L(f ,P1) ≤ L(f , q) ≤ U(f ,Q) ≤ U(f ,P2).

■

John M. Weeks Advanced Calculus I 2023-08-02 156 / 188



Lemma

(1) Let P be a partition of [a, b]. Then for any function f , L(f ,P) ≤ U(f ,P). (2) Let P1,P2
be two partitions of [a, b]. Then L(f ,P1) ≤ U(f ,P2).

Proof.

(of 1) This comes from the fact that mk = inf{f (x) : x ∈ [xk−1, xk ]} ≤ sup{f (x) : x ∈
[xk−1, xk ]} = Mk .

(of 2) Let Q = P1 ∪ P2.

Then Q is a common refinement of P1 and P2. Hence

L(f ,P1) ≤ L(f , q) ≤ U(f ,Q) ≤ U(f ,P2).

■

John M. Weeks Advanced Calculus I 2023-08-02 156 / 188



Lemma

(1) Let P be a partition of [a, b]. Then for any function f , L(f ,P) ≤ U(f ,P). (2) Let P1,P2
be two partitions of [a, b]. Then L(f ,P1) ≤ U(f ,P2).

Proof.

(of 1) This comes from the fact that mk = inf{f (x) : x ∈ [xk−1, xk ]} ≤ sup{f (x) : x ∈
[xk−1, xk ]} = Mk .

(of 2) Let Q = P1 ∪ P2. Then Q is a common refinement of P1 and P2.

Hence

L(f ,P1) ≤ L(f , q) ≤ U(f ,Q) ≤ U(f ,P2).

■

John M. Weeks Advanced Calculus I 2023-08-02 156 / 188



Lemma

(1) Let P be a partition of [a, b]. Then for any function f , L(f ,P) ≤ U(f ,P). (2) Let P1,P2
be two partitions of [a, b]. Then L(f ,P1) ≤ U(f ,P2).

Proof.

(of 1) This comes from the fact that mk = inf{f (x) : x ∈ [xk−1, xk ]} ≤ sup{f (x) : x ∈
[xk−1, xk ]} = Mk .

(of 2) Let Q = P1 ∪ P2. Then Q is a common refinement of P1 and P2. Hence

L(f ,P1) ≤ L(f , q) ≤ U(f ,Q) ≤ U(f ,P2).

■

John M. Weeks Advanced Calculus I 2023-08-02 156 / 188



Lemma

(1) Let P be a partition of [a, b]. Then for any function f , L(f ,P) ≤ U(f ,P). (2) Let P1,P2
be two partitions of [a, b]. Then L(f ,P1) ≤ U(f ,P2).

Proof.

(of 1) This comes from the fact that mk = inf{f (x) : x ∈ [xk−1, xk ]} ≤ sup{f (x) : x ∈
[xk−1, xk ]} = Mk .

(of 2) Let Q = P1 ∪ P2. Then Q is a common refinement of P1 and P2. Hence

L(f ,P1) ≤ L(f , q) ≤ U(f ,Q) ≤ U(f ,P2).

■

John M. Weeks Advanced Calculus I 2023-08-02 156 / 188



Definition

Let P be the collection of all possible partitions of [a, b]. The upper integral of f is
defined to be U(f ) = inf{U(f ,P) : P ∈ P}.

The lower integral of f is defined as L(f ) =
sup{L(f ,P) : P ∈ P}.

Lemma

For any bounded function f on [a, b], U(f ) ≥ L(f ).

Proof.

Exercise. ■

We should expect the integral to our function to exist if the sum of areas of upper
rectangles and that of the lower rectangles “meet in the middle". In our Calc I method, we
would not say the integral existed if the limit did not exist.
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Consider the Dirichlet function 1Q(x) :=

{
1 x ∈ Q
0 x ∈ Qc .

U(1Q) = 1, while L(1Q) = 0. The upper and lower integral do not agree - we should
expect the Riemann integral of this function to not exist.

Consider the Thomae function f (x) :=

{
0 x ∈ [0, 1] \Q
1
q x = p

q , gcd(p, q) = 1
.

L(f ) = 0. What is U(f )? It’s 0. We can choose a partition Pn that has very small
rectangles at points p

q for q ≤ n. If the rectangles are small enough, we can bound
U(f ,Pn) ≤ 1

n+1 + ε for any ε > 0. For the partition Pn, pick εn so that U(f ,Pn) ≤ 1
n . Then

take an infimum to get U(f ). So we would define the (Riemann) integral of f to be 0.

Definition

A bounded function f defined on the interval [a, b] is Riemann-integrable if U(f ) = L(f ).
We write: ∫ b

a
f = U(f ) = L(f ).
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Theorem

A bounded function f is integrable on [a, b] iff, for every ε > 0, there exists a partition Pε
of [a, b] such that U(f ,Pε)− L(f ,Pε) < ε.

Proof.

(⇐) Let ε > 0. Note U(f ) ≤ U(f ,Pε) and L(f ) ≥ L(f ,Pε) by their definition as an infimum
and a supremum respectively. Hence U(f ) − L(f ) ≤ U(f ,Pε) − L(f ,Pε) < ε. The choice
of ε > 0 is arbitrary, so U(f ) = L(f ) and f is integrable.
(⇒) Fix ε > 0. By the definition of U(f ) being integrable, there is a partition P1 such that
U(f ,P1) < U(f ) + ε2 . Similarly, there is a partition P2 such that L(f ,P2) > L(f ) − ε2 . Let
Pε be the common refinement. Then U(f ,Pε)−L(f ,Pε) ≤ U(f ,P1)−L(f ,P2). This is less
than or equal to (U(f ) + ε2) − (L(f ) − ε2) =

ε
2 + ε2 = ε. (We use the fact that U(f ) = L(f )

in the penultimate equality.) ■
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Theorem

If f is continuous on [a, b], then it is integrable.

Proof.

f is continuous on a compact set, so it is bounded. It is also uniformly continuous. Fix
ε > 0 and let δ > 0 be the guaranteed value such that |f (x) − f (y)| < ε

b−a whenever
|x − y | < δ.
Take a partition P of [a, b] where ∆xk := xk − xk−1 is less than δ for each subinterval
of P. Given a subinterval [xk−1, xk ], we know f attains a supremum Mk = f (zk ) for some
zk ∈ [zk−1, zk ]. We can also find an infimum mk = f (yk ) in this interval. Note |zk−yk | < δ,
so Mk −mk = f (zk )− f (yk ) <

ε
b−a .

Then U(f ,P) − L(f ,P) =
∑n

k=1(Mk − mk )∆xk < ε
b−a

∑n
k=1 ∆xk = ε. By the previous

theorem, f is integrable. ■
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Take a partition P of [a, b] where ∆xk := xk − xk−1 is less than δ for each subinterval
of P. Given a subinterval [xk−1, xk ], we know f attains a supremum Mk = f (zk ) for some
zk ∈ [zk−1, zk ]. We can also find an infimum mk = f (yk ) in this interval. Note |zk−yk | < δ,
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ε
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Theorem

Let f be a bounded function and let c ∈ (a, b). Then f is integrable on [a, b] iff f is
integrable on [a, c] and on [c, b] too.

Proof.

(⇒) Fix ε > 0. Find a partition P such that U(f ,P) − L(f ,P) < ε. WLOG assume c is in
the partition of P. (Why is this okay?) Let P1 := P ∩ [a, c] and P2 := P ∩ [c, b]. These are
partitions of [a, c] and [c, b] respectively. Note that U(f ,P)−L(f ,P) =

∑n
i=1(Mi−mi)(xi−

xi−1) is a series where all terms are positive. Since U(f ,P1) − L(f ,P1) consists of only
some of these terms, U(f ,P1) − L(f ,P1) ≤ U(f ,P) − L(f ,P) < ε. Similarly, U(f ,P2) −
L(f ,P2) < ε. Since ε > 0 was arbitrary, f is integrable on [a, c] and [c, b].

(⇐) Let P1 and P2 be partitions of [a, c] and [c, b] respectively. Fix ε > 0, and let P1,P2 be
partitions such that U(f ,P1)−L(f ,P1) <

ε
2 and U(f ,P2)−L(f ,P2) <

ε
2 . Then P = P1∪P2

is a partition of [a, b], and U(f ,P)− L(f ,P) < ε. ■
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Theorem:
∫ b

a f =
∫ c

a f +
∫ b

c f
Proof:

With ε,P,P1,P2 as before,∫ b

a
f ≤ U(f ,P)

< L(f ,P) + ε

= L(f ,P1) + L(f ,P2) + ε

≤
∫ c

a
f +

∫ b

c
f + ε.

Also,
∫ c

a
f +

∫ b

c
f ≤ U(f ,P1) + U(f ,P2)

< L(f ,P1) + L(f ,P2) + ε

= L(f ,P) + ε

≤
∫ b

a
f + ε.

Proof Idea: In calculus we are given this
equality to use with an intuitive explanation.
We would like to prove this with our integral
definition.
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we prove the ≤ side.
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We would like to prove this with our integral
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A common style for proving a = b at this
level is to prove a ≤ b and b ≤ a. This
allows us to use ε-style inequalities. Here
we prove the ≤ side.
The ≥ side will be pretty similar. We are
skipping some of the definitions we would
normally need to make since we were
deliberate in our definitions from the
previous part of our proof - normally we
would need to say “let ε > 0, P1 be...."
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A common style for proving a = b at this
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Letting ε→ 0, we are done.
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Theorem

Let f and g be integrable functions on the interval [a, b]. Then f +g is integrable on [a, b].

Proof.

Fix ε > 0 and find a partition P = (xi)
n
i=0 such that U(f ,P) − L(f ,P) < ε

2 and U(g,P) −
L(g,P) < ε

2 . (Why can we do this?) We want to connect these to U(f + g,P) and L(f +
g,P). By definition, U(f + g,P) =

∑n
i=1 M f+g

i (xi − xi−1) where M f+g
i = sup{f (x) + g(x) :

x ∈ [xi−1, xi ]}. Note M f+g
i ≤ sup{f (x) : x ∈ [xi−1, xi ]}+ sup{g(x) : x ∈ [xi−1, xi ]} =: M f

i +
Mg

i . So U(f +g,P) ≤
∑n

i=1(M
f
i +Mg

i )(xi−xi−1) =
∑n

i=1 M f
i (xi−xi−1)+

∑n
i=1 Mg

i (xi−xi−1)
= U(f ,P) + U(g,P).
Similarly (but with important differences), L(f + g,P) =

∑n
i=1 mf+g

i (xi − xi−1)
≥
∑n

i=1 mf
i (xi−xi−1)+

∑n
i=1 mg

i (xi−xi−1) = L(f ,P)+L(g,P). So U(f+g,P)−L(f+g,P) ≤
(U(f ,P)− L(f ,P)) + (U(g,P)− L(g,P)) < ε. ■
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Theorem:
∫ b

a (f + g) =
∫ b

a f +
∫ b

a g
Proof:

With ε,P as before,∫ b

a
(f + g) ≤ U(f + g,P)

≤ U(f ,P) + U(g,P)

< L(f ,P) + L(g,P) + ε

≤
∫ b

a
f +

∫ b

a
g + ε.

Also,
∫ b

a
f +

∫ b

a
g ≤ U(f ,P) + U(f ,P)

< L(f ,P) + L(g,P) + ε

= L(f + g,P) + ε

≤
∫ b

a
(f + g) + ε.

Proof Idea: Can you try this?
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—
Letting ε→ 0, we get the desired
equality.
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Theorem

If f and g are integrable functions on [a, b],

1 For k ∈ R, kf is integrable and

∫ b
a kf = k

∫ b
a f .

2 If m ≤ f (x) ≤ M on [a, b], m(b − a) ≤
∫ b

a f ≤ M(b − a).

3 If f (x) ≤ g(x) on [a, b], then
∫ b

a f ≤
∫ b

a g.

4 The function |f | is integrable and |
∫ b

a f | ≤
∫ b

a |f |.

Proof.

Exercise. For (iv), you may be able to use something from (i), (ii), and/or (iii) to prove the
inequality. ■
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The Fundamental Theorem of Calculus

We now arrive at one of the apexes of analysis - the ability to connect derivatives and
integrals together.

Theorem

(i) If f : [a, b]→ R is integrable, and F : [a, b]→ R satisfies F ′(x) = f (x) for all x ∈ [a, b],
then ∫ b

a
f = F (b)− F (a).

(ii) Let g : [a, b]→ R be integrable, and for x ∈ [a, b], define

G(x) =
∫ x

a
g.

Then G is continuous on [a, b]. If g is continuous at some point c ∈ [a, b], then G is
differentiable at c and G′(c) = g(c).
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To prove this theorem we need to justify that the integral and derivative are
indeed opposites of each other.

In our former world of example-based learning, this was
very easy to believe: the derivative of x2 is 2x , and the integral of 2x is x2 plus a constant.
But in a proof-based course it seems difficult to know how to proceed unless we use the
tools we already know - perhaps even those from derivatives.

Proof of (ii).

We first show that G is continuous. Note that

|G(x)−G(c)| =
∣∣∣∣∫ x

a
f −

∫ c

a
f
∣∣∣∣ = ∣∣∣∣∫ x

c
f
∣∣∣∣ .

Note f is bounded since it is integrable, so there is some M such that |
∫ c

x f | ≤ M|x − c|.
So as we limit x to approach c, we get that |G(x)−G(c)| goes to zero. ■
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Recall that FTC(ii) says in brief that, if a function g is integrable
and G(x) :=

∫ x
a g, then G′(c) = g(c).

Proof of (ii) (Continued).

Now we wish to calculate the derivative of G. We use the definition of the derivative:

lim
x→c

G(x)−G(c)
x − c

= lim
x→c

∫ c
x g

x − c
.

By the Mean Value Theorem for Integrals (HW 23 #3), there exists a value c′ ∈ (x , c)
such that

∫ c
x g = g(c′)(x − c). So

G′(c) = lim
x→c

∫ c
x g

x − c
= lim

x→c

g(c′)(x − c)
x − c

.

The last equality is true since g is continuous at c. ■
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Recall that FTC(i) states in brief that, if f is integrable and F is such that F ′(x) = f (x),
then

∫ b
a f = F (b)− F (a).

Proof of (i).

We begin by using the Mean Value Theorem on F . Let P be a partition of [a, b].

Then
for any subinterval [xi−1, xi ] of P, there is some ci ∈ (xi−1, xi) such that f (ci) = F ′(ci) =
F (xi )−F (xi−1)

xi−xi−1
. Note that multiplying both sides by xi − xi−1 gives us f (ci)∆xi = F (xi) −

F (xi−1).
Sum each side of the equality sign by the values of i in the partition P. Then the left-hand
side becomes an integral approximation; in fact, L(f ,P) ≤

∑n
i=1 f (ci)∆xi ≤ U(f ,P). The

right-hand side becomes a telescoping sum:
∑n

i=1 = F (xn)−F (x0) = F (b)−F (a). Note
that the right-hand side no longer cares about the partition: all partitions of [a, b] begin at
a and end at b. So it is safe to refine this partition indefinitely. The left-hand side becomes
in the integral of f on a, b since f is integrable, so we are done. ■
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We also learned about u-substitution, one of the main tools we use in solving integrals:

Theorem (Change of Variables)

Let g : [a, b] → R be a continuously differentiable function, let f : [c, d ] → R be continu-
ous, and suppose g([a, b]) ⊂ [c, d ] (notice the similarity to the set-up for Chain Rule).

Then ∫ b

a
f (g(x))g′(x) dx =

∫ g(b)

g(a)
f (s) ds.

Proof.

Define F : [c, d ] → R to be given by F (y) :=
∫ y

g(a) f (s) ds. Then by FTC(ii), F is differen-
tiable and F ′(y) = f (y). We eventually want y to be g(b), so let’s consider (F ◦ g) and
take its derivative:

(F ◦ g)′(x) = F ′(g(x))g′(x) = f (g(x))g′(x).

■
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Logarithms and Exponentials

Question: what is
√

2
√

2
?

√
2

1.4 10
√

27 1.6245...
√

2
1.41 200

√
2141 1.63014...

√
2

1.414 1000
√

2707 1.63241...

Does this converge to a rational or irrational number? This is one of the most popular
types of problems from the twentieth century, thanks to David Hilbert.

John picked this picture because of how nerdy he looks
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Although it is straightforward to define rational powers of numbers x
m
n using

integer powers and natural number roots, it is hard to imagine what raising to an irrational
power would mean.

Logarithms might be useful here: using the powers of logarithms, we
could rewrite this as

eln(
√

2
√

2
) =

Even here we struggle, because it appears that we have just substituted one irrational
power for a worse one. But remember that the exponential function ex can be defined
using a very nice Taylor series... and there are lots of other tricks we have up our sleeve
once a number comes into this form.

Theorem (Taylor Expansion of ex )

ex =
∞∑

k=0

xk

k !
= 1 + x +

x2

2!
+

x3

3!
+ · · ·

Calculators will often use formulas like this one to approximate these strange exponents.
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Proposition (What function could this be?)

There exists a unique function L : (0,∞)→ R such that
1 L(1) = 0.
2 L is differentiable and L′(x) = 1

x .
3 L is strictly increasing and bijective where limx→0 L(x) = −∞ and limx→∞ L(x) =∞.
4 L(xy) = L(x) + L(y) for all x , y ∈ (0,∞).
5 If q is a rational number and x > 0, then L(xq) = qL(x).

Proof of Uniqueness.

We only need (1) and (2) for this function to be unique. (Any ideas why?) Say F is another
function such that F (1) = 0, F is differentiable, and F ′(x) = 1

x . Since 1
x is integrable on

intervals [a, b], the function L(x) :=
∫ x

1
1
t dt also has all of these properties by FTC(i).

Hence (L− F )′(x) = 0. This means that L− F is a constant term, but that constant term
must be zero since L(1) = F (1). So L = F . ■
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Proof of Existence.

We proved that the function L :=
∫ x

1
1
t dt has property (4) in our quiz for today.

Since 1
x > 0, a homework question shows that L is strictly increasing.

(4) also shows that L(2n) = L(2) + L(2) + · · ·+ L(2)︸ ︷︷ ︸
n times

, and since 1
x ≥

1
2 for x ∈ [1, 2] we

have L(2) =
∫ 2

1
1
x dx ≥ 1

2(2− 1).
Combining this with the fact that L is strictly increasing, we see that limx→∞ L(x) =∞.
(4) also gives that 0 = L(1) = L(x 1

x ) = L(x) + L
( 1

x

)
. So L

( 1
x

)
= −L(x).

Hence as x approaches infinity, L( 1
x ) approaches the same thing as −L(x), which is

negative infinity. This completes (3) - bijectivity comes from L being strictly increasing,
continuous, and having a range from (−∞,∞). (Hint: for surjectivity, use Intermediate
Value Theorem.)
(5) can be done in a similar way. ■

John M. Weeks Advanced Calculus I 2023-08-02 175 / 188



Proof of Existence.

We proved that the function L :=
∫ x

1
1
t dt has property (4) in our quiz for today.

Since 1
x > 0, a homework question shows that L is strictly increasing.

(4) also shows that L(2n) = L(2) + L(2) + · · ·+ L(2)︸ ︷︷ ︸
n times

, and since 1
x ≥

1
2 for x ∈ [1, 2] we

have L(2) =
∫ 2

1
1
x dx ≥ 1

2(2− 1).
Combining this with the fact that L is strictly increasing, we see that limx→∞ L(x) =∞.
(4) also gives that 0 = L(1) = L(x 1

x ) = L(x) + L
( 1

x

)
. So L

( 1
x

)
= −L(x).

Hence as x approaches infinity, L( 1
x ) approaches the same thing as −L(x), which is

negative infinity. This completes (3) - bijectivity comes from L being strictly increasing,
continuous, and having a range from (−∞,∞). (Hint: for surjectivity, use Intermediate
Value Theorem.)
(5) can be done in a similar way. ■

John M. Weeks Advanced Calculus I 2023-08-02 175 / 188



Proof of Existence.

We proved that the function L :=
∫ x

1
1
t dt has property (4) in our quiz for today.

Since 1
x > 0, a homework question shows that L is strictly increasing.

(4) also shows that L(2n) = L(2) + L(2) + · · ·+ L(2)︸ ︷︷ ︸
n times

, and since 1
x ≥

1
2 for x ∈ [1, 2] we

have L(2) =
∫ 2

1
1
x dx ≥ 1

2(2− 1).

Combining this with the fact that L is strictly increasing, we see that limx→∞ L(x) =∞.
(4) also gives that 0 = L(1) = L(x 1

x ) = L(x) + L
( 1

x

)
. So L

( 1
x

)
= −L(x).

Hence as x approaches infinity, L( 1
x ) approaches the same thing as −L(x), which is

negative infinity. This completes (3) - bijectivity comes from L being strictly increasing,
continuous, and having a range from (−∞,∞). (Hint: for surjectivity, use Intermediate
Value Theorem.)
(5) can be done in a similar way. ■

John M. Weeks Advanced Calculus I 2023-08-02 175 / 188



Proof of Existence.

We proved that the function L :=
∫ x

1
1
t dt has property (4) in our quiz for today.

Since 1
x > 0, a homework question shows that L is strictly increasing.

(4) also shows that L(2n) = L(2) + L(2) + · · ·+ L(2)︸ ︷︷ ︸
n times

, and since 1
x ≥

1
2 for x ∈ [1, 2] we

have L(2) =
∫ 2

1
1
x dx ≥ 1

2(2− 1).
Combining this with the fact that L is strictly increasing, we see that limx→∞ L(x) =∞.

(4) also gives that 0 = L(1) = L(x 1
x ) = L(x) + L

( 1
x

)
. So L

( 1
x

)
= −L(x).

Hence as x approaches infinity, L( 1
x ) approaches the same thing as −L(x), which is

negative infinity. This completes (3) - bijectivity comes from L being strictly increasing,
continuous, and having a range from (−∞,∞). (Hint: for surjectivity, use Intermediate
Value Theorem.)
(5) can be done in a similar way. ■

John M. Weeks Advanced Calculus I 2023-08-02 175 / 188



Proof of Existence.

We proved that the function L :=
∫ x

1
1
t dt has property (4) in our quiz for today.

Since 1
x > 0, a homework question shows that L is strictly increasing.

(4) also shows that L(2n) = L(2) + L(2) + · · ·+ L(2)︸ ︷︷ ︸
n times

, and since 1
x ≥

1
2 for x ∈ [1, 2] we

have L(2) =
∫ 2

1
1
x dx ≥ 1

2(2− 1).
Combining this with the fact that L is strictly increasing, we see that limx→∞ L(x) =∞.
(4) also gives that 0 = L(1) = L(x 1

x ) = L(x) + L
( 1

x

)
. So L

( 1
x

)
= −L(x).

Hence as x approaches infinity, L( 1
x ) approaches the same thing as −L(x), which is

negative infinity. This completes (3) - bijectivity comes from L being strictly increasing,
continuous, and having a range from (−∞,∞). (Hint: for surjectivity, use Intermediate
Value Theorem.)
(5) can be done in a similar way. ■

John M. Weeks Advanced Calculus I 2023-08-02 175 / 188



Proof of Existence.

We proved that the function L :=
∫ x

1
1
t dt has property (4) in our quiz for today.

Since 1
x > 0, a homework question shows that L is strictly increasing.

(4) also shows that L(2n) = L(2) + L(2) + · · ·+ L(2)︸ ︷︷ ︸
n times

, and since 1
x ≥

1
2 for x ∈ [1, 2] we

have L(2) =
∫ 2

1
1
x dx ≥ 1

2(2− 1).
Combining this with the fact that L is strictly increasing, we see that limx→∞ L(x) =∞.
(4) also gives that 0 = L(1) = L(x 1

x ) = L(x) + L
( 1

x

)
. So L

( 1
x

)
= −L(x).

Hence as x approaches infinity, L( 1
x ) approaches the same thing as −L(x), which is

negative infinity. This completes (3) - bijectivity comes from L being strictly increasing,
continuous, and having a range from (−∞,∞). (Hint: for surjectivity, use Intermediate
Value Theorem.)

(5) can be done in a similar way. ■

John M. Weeks Advanced Calculus I 2023-08-02 175 / 188



Proof of Existence.

We proved that the function L :=
∫ x

1
1
t dt has property (4) in our quiz for today.

Since 1
x > 0, a homework question shows that L is strictly increasing.

(4) also shows that L(2n) = L(2) + L(2) + · · ·+ L(2)︸ ︷︷ ︸
n times

, and since 1
x ≥

1
2 for x ∈ [1, 2] we

have L(2) =
∫ 2

1
1
x dx ≥ 1

2(2− 1).
Combining this with the fact that L is strictly increasing, we see that limx→∞ L(x) =∞.
(4) also gives that 0 = L(1) = L(x 1

x ) = L(x) + L
( 1

x

)
. So L

( 1
x

)
= −L(x).

Hence as x approaches infinity, L( 1
x ) approaches the same thing as −L(x), which is

negative infinity. This completes (3) - bijectivity comes from L being strictly increasing,
continuous, and having a range from (−∞,∞). (Hint: for surjectivity, use Intermediate
Value Theorem.)
(5) can be done in a similar way. ■

John M. Weeks Advanced Calculus I 2023-08-02 175 / 188



Proposition (What function is this one then :))

There exists a unique function E : R→ (0,∞) such that
1 E(0) = 1.
2 E is differentiable and E ′(x) = E(x).
3 E is strictly increasing and bijective where limx→−∞ E(x) = 0 and

limx→∞ E(x) =∞.
4 E(x + y) = E(x)E(y) for all x , y ∈ R.
5 If q ∈ Q, then E(qx) = E(x)q.

Proof of Uniqueness.

We use (1), (2), and (4) for this: let F be another function such that F (0) = 1, F is
differentiable and F ′(x) = F (x). We attempt to find a combination of E and F that helps
us show these are equal... we come up with the fact that [F (x)E(−x)]′ = F ′(x)E(−x)−
E ′(−x)F (x) = F (x)E(−x)− E(−x)F (x) = 0. Hence F (x)E(−x) is a constant function -
it has no slope! So F (x)E(−x) = F (0)E(−0) = 1. Multiplying by E(x), we are done. ■
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Note that we haven’t even defined E yet! What’s a way to define E without citing Euler’s
number e?

Indeed: we want to define E to be the inverse of L. (This is not the only way to
define this function, but it saves us a good bit of time - most of the work will come from the
Inverse Function Theorem below.)

Proof of Existence.

Since L(1) = 0, E(0) = L−1(0) = 1, as (1) claims.
The Inverse Function Theorem allows us to calculate E ′(x) = 1

L′(L−1(x)) = 1
L′(E(x)) =

1
1

E(x)
= E(x). This gives (2).

Since E ′(x) = E(x) > 0, E is strictly increasing. By properties of the inverse function,
we get that limx→−∞ E(x) = 0 and limx→∞ E(x) =∞.
E is continuous since it is differentiable. So by Intermediate Value Thoerem, E is bijective,
yielding (3).
(4) and (5) are homework exercises. ■
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Example: show that ex = lim
n→∞

(
1 +

x
n

)n
. (What would you like to do?)

We start by analyzing lim
n→∞

ln
(

1 +
x
n

)n
.

We rewrite: lim
n→∞

n ln
(

1 +
x
n

)
= limn→∞

ln(1+ x
n )

1
n

.

This seems to satisfy the properties of L’Hopital’s Rule. To make sure, let’s take the
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Improper Integrals

Question: what is
∫ 1

0

1√
x

dx?

It makes sense that the value of this integral should be 2
√

x |10 = 2. However, 1√
x is

unbounded on [0, 1]. Recall that integrable functions are bounded on their intervals of
integration - this seems a bit restrictive. This is an example of an improper integral:

Definition

Suppose f : [a, b)→ R is a function (not necessarily bounded) that is Riemann integrable
on [a, c] for all c < b. We define the improper integral of f on [a, b] to be∫ b

a
f := lim

c→b−

∫ c

a
f , should the limit exist.

For example,
∫ 1

0
1√
x = limb→0+

∫ 1
b

1√
x = limb→0+ 2

√
x |1b = limb→0+(2− 2

√
b) = 2.
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The same is true for intervals of integration that are
themselves unbounded, like [a,∞). These integrals should exist, but in order to extract as
much information from them as possible we ask for them to be defined using a limit as
well:

Definition

Suppose f : [a,∞) → R is a function such that f is Riemann integrable on [a, c] for all
c <∞. We define ∫ ∞

a
f := lim

c→∞

∫ c

a
f should the limit exist.

Example:
∫∞

1
1
x2 = limb→∞

∫ b
1

1
x2 = limb→∞− 1

x |
b
1 = limb→∞(1− 1

b ) = 1.
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Using this definition we get lots of similar theorems to our integral theorems...
and some theorems that might remind us of series:

Let f , g : [a,∞)→ R be functions that are
Riemann integrable on [a, b] for all b > a.
Suppose further that |f (x)| ≤ g(x) for all
x ≥ a.
If
∫∞

a g converges, then
∫∞

a f converges too,
and |

∫∞
a f | ≤

∫∞
a g.

If
∫∞

a f diverges, then
∫∞

a g diverges.

Let f : [a,∞)→ R be integrable on [a, b] for
all b > a. Then for all b > a,

∫∞
b f

converges iff
∫∞

a f converges, and∫∞
a f =

∫ b
a f +

∫∞
b f (tail-ends of integrals).

Let (xn) diverge to infinity. Then
∫∞

a f
converges iff limxn

a f exists, in which case∫∞
a f = limn→∞

∫ xn
a f (think “partial sums" of

integrals).

One piece connects these stories together: if an improper integral with an interval
clustering toward infinity exists, its value can be thought of as a series of (proper)
integrals! For example,∫ ∞

0
f (x) dx =

∫ 1

0
f (x) dx +

∫ 2

1
f (x) dx +

∫ 3

2
f (x) dx + · · ·
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Example: Show that
∫∞

2π
sin(x)

x dx converges.

What would be a useful way to
divide up this interval into proper integrals? We can try using the period of sine, which is
2π, since there should be a lot of similarity between integrals of these types: sin(x) has
the same behavior on each interval of integration.∫ ∞

2π

sin(x)
x

dx =

∫ 4π

2π

sin(x)
x

dx +

∫ 6π

4π

sin(x)
x

dx + · · · =
∞∑

k=1

∫ 2(k+1)π

2kπ

sin(x)
x

dx .

We want to begin analzying this intervals, so let’s ask some questions about
[2kπ, 2(k + 1)π].
Question: where is sin(x) positive on this interval?
What’s different about sin(x) on [(2k + 1)π, (2k + 2)π]? Then since multiplying by a
negative number flips the signs, we should get

1
(2k + 2)π

≤ 1
x
≤ 1

(2k + 1)π
⇒ sin(x)

(2k + 1)π
≤ sin(x)

x
≤ sin(x)
π(2k + 2)

.

Note that terms like sin(x)
(2k+1)π are easy to integrate! (Why?)
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2kπ
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2
(2k + 1)π

≤
∫ (2k+1)π

2kπ

sin(x)
x

dx ≤ 1
kπ

.

Added together: 0 ≤
∫ 2(k+1)π

2kπ

sin(x)
x

≤ 1
k(k + 1)π

.

−2
(2k + 1)π

≤
∫ (2k+2)π

(2k+1)π

sin(x)
x

≤ −1
(k + 1)π
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So at the end of it all:

0 ≤
∫ ∞

2π

sin(x)
x

=
∞∑

k=1

∫ 2(k+1)π

2kπ

sin(x)
x

≤
∞∑

k=1

1
k(k + 1)π

.

The series on the right converges by p-test! So how does this show that this integral
converges? We have shown this series consists of purely positive terms, so this is an
increasing sequence. Monotone Convergence Theorem says that this series converges.

The sinc function f (x) =

{
sin(x)

x if x ̸= 0
1 if x = 0

is a very important function for partial

differential equations, which are used in biology, biochemistry, and physics research,
along other applications.
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Sequences of Functions

We return to Taylor polynomials: given a smooth function f , the Taylor polynomials Pn
approximate the function f on its domain.

Pn(x) := f (c) + f ′(c)(x − c) +
f ′′(c)

2!
(x − c)2 + · · ·+ f (n)(c)

n!
(x − c)n.

The Taylor polynomials form a sequence of functions: the sequence (P1,P2,P3, . . . )
now has functions as its entries rather than real numbers. Historically, this machinery was
developed to approximate functions with other more basic function types. (For example,
polynomials can approximate the exponential function ex .)
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In fact, recall Taylor’s Theorem:

Theorem (Taylor)

Let f possess at least n + 1 derivatives on an open interval I and let c ∈ I. Let Rn(x) =
f (x)−Pn(x), where Pn(x) is the nth Taylor polynomial centered at c. Then for each x ∈ I
there exists z between x and c such that

Rn(x) =
f (n+1)(z)
(n + 1)!

(x − c)n+1.

This theorem tells us that, for any function f such that Rn(x) := f (x)− Pn(x) goes to zero
as n→∞, f (x)→ Pn(x). This is called pointwise convergence of functions: when
isolating each x-value in the domain of f , the polynomial begins looking at lot like f !
Question: does the sequence of functions fn(x) := xn converge pointwise to f (x) = 0 on
the interval [0, 1)? Yes. Since x < 1, xn → 0 as n→∞. So |fn(x)− f (x)| → 0 as n→∞;
this is the definition of pointwise convergence.
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f (x)−Pn(x), where Pn(x) is the nth Taylor polynomial centered at c. Then for each x ∈ I
there exists z between x and c such that

Rn(x) =
f (n+1)(z)
(n + 1)!

(x − c)n+1.

This theorem tells us that, for any function f such that Rn(x) := f (x)− Pn(x) goes to zero
as n→∞, f (x)→ Pn(x). This is called pointwise convergence of functions: when
isolating each x-value in the domain of f , the polynomial begins looking at lot like f !
Question: does the sequence of functions fn(x) := xn converge pointwise to f (x) = 0 on
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Definition

For each n ∈ N, let fn : S → R be a function. Let f : S → R be another function. Then we
say fn converges pointwise to f if, for every x ∈ S, we have f (x) = limn→∞ fn(x).

That is,
for all x ∈ S and ε > 0, there exists some N ∈ N such that, for n > N, |fn(x)− f (x)| < ε.

In quantifiers, this reads like this:

∀x ∈ S ∀ε > 0, ∃N ∈ N ∋ ∀n > N, |fn(x)− f (x)| < ε.

We get an even stronger definition if we can rewrite the quantifiers in this way:

∀ε > 0, ∃N ∈ N ∋ ∀x ∈ S∀n > N, |fn(x)− f (x)| < ε
(like continuity vs. uniform continuity...)

Definition

Let fn, f be as above. We say that fn converges uniformly to f if, for all ε > 0, there
exists an N ∈ N such that, for n > N, |fn(x)− f (x)| < ε for all x ∈ S.
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Question: does the sequence of functions fn(x) := xn converge pointwise to
f (x) = 0 on the interval [0, 1)? Yes. Since x < 1, xn → 0 as n→∞. So |fn(x)− f (x)| → 0
as n→∞; this is the definition of pointwise convergence.

Question: does the sequence of functions fn(x) := xn converge uniformly to f (x) = 0 on
the interval [0, 1)? No. We claim there is always an x-value such that fn(x) has a value of
1
2 , which would be an ε = 1

2 value away from the zero function at that point. Indeed,

xn = 1
2 ⇐⇒ n ln(x) = − ln(2) ⇐⇒ x = e− 1

n ln(2) gives us such a value. Since this is true
past all cut-off points for N, we have fn does not converge uniformly to f .
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