
CONTENTS Texas A&M

Solutions to Texas A&M’s Real Analysis Qual Courses

Texas A&M Grad Students

Last Revised: October 2024

These are the solutions to the majority of the available past real analysis qualifying exams for Texas

A&M. Incomplete/non-existent solutions are marked in red. If you find any errors/typos or have

solutions to the unsolved questions, please email the current maintainer at jweeks03@tamu.edu.

Credit for the founding of this document, the template, and the majority of these solutions goes to

Kari Eifler. As a whole the solutions here are a collaborative effort with some solutions belonging to

John Griffin, Wonhee Na, Jun Sur Park, Garrett Tresch, John Weeks, Zhiyuan Yang, and Byeongsu

Yu, as well as those noted in the text. Kari Eifler and John Weeks are the main compilers of these

solutions.

Contents

1 January 2024 4

2 August 2023 7

3 January 2023 11

4 August 2022 15

5 January 2022 19

6 August 2021 22

7 January 2021 26

8 August 2020 31

1

mailto:jweeks03@tamu.edu


CONTENTS Texas A&M

9 January 2020 35

10 August 2019 41

11 January 2019 45

12 August 2018 50

13 January 2018 58

14 August 2017 66

15 January 2017 74

16 August 2016 82

17 January 2016 88

18 August 2015 94

19 January 2015 100

20 August 2014 107

21 January 2014 113

22 August 2013 117

23 January 2013 124

24 August 2012 130

25 January 2012 135

26 August 2011 140

27 January 2011 147

28 August 2010 152

2



CONTENTS Texas A&M

29 January 2010 156

30 August 2009 162

31 January 2009 167

3



1 JANUARY 2024 Texas A&M

Note: different solution authors use differing notation for “is a (proper) subset of” (⊂,⊆) as well

as for “the (closed) ball of radius r at a point x” (B(r, x), B(x, r)); please be sure to interpret this

notation contextually. Another common notation throughout is that of [n] := {1, 2, . . . , n}.

1 January 2024

1. Let E be a Lebesgue measurable set of positive measure. Show that for any 0 < α < 1, there is

an open interval I such that m(E ∩ I) > αm(I).

Proof. One can directly prove this using Lebesgue differentiation theorem. Or one can use the defi-

nition of Lebesgue measure: Assume the statement is not true. Fix ε > 0. Let {Ui}i∈I be an count-

able family of open interval that covers E, such that m(E) ≥
∑

i∈I m(Ui)− ε. We have

m(E) ≥ 1/α
∑
i∈I

m(Ui ∩ E)− ε = 1/αm(E)− ε,

where we used the fact that
⋃

i∈I Ui ∩ E = E. Let ε → 0, we obtain m(E) ≥ 1/αm(E), contradic-

tion.

2. Let (xn)
∞
n=1 be a sequence in [0, 1], and (cn)

∞
n=1 be a sequence of non-negative numbers such that∑∞

n=1 cn <∞. Show that the series
∞∑

n=1

cn
|x− xn|1/2

converges for almost every x ∈ [0, 1].

Proof. Since for every x the series
∑∞

n=1
cn

|x−xn|1/2
is positive, it either converges or tends to ∞.

Therefore, it suffices to show that the integral∫ 1

0

∞∑
n=1

cn
|x− xn|1/2

dx

is finite. By Tonelli’s theorem, we have

∞∑
n=1

∫ 1

0

cn
|x− xn|1/2

dx =

∞∑
n=1

2cn(
√
xn +

√
1− xn) ≤ 4

∞∑
n=1

cn <∞.

3. Find the sum
∞∑
k=2

(−1)k
∞∑

n=2

1

nk
.

Proof. Note that we can not use Fubini’s theorem as the double summation does not converges ab-
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1 JANUARY 2024 Texas A&M

solutely.

∞∑
k=2

(−1)k
∞∑

n=2

1

nk
= lim

K→∞

K∑
k=2

(−1)k
∞∑

n=2

1

nk
= lim

K→∞

∞∑
n=2

K∑
k=2

(−1)k
1

nk

= lim
K→∞

∞∑
n=2

1

n2
1− (−1/n)K−1

1 + 1/n
=

∞∑
n=2

1

n(n+ 1)
+ lim

K→∞

∞∑
n=2

1

n2
(−1/n)K−1

1 + 1/n

=
1

2
+ lim

K→∞

∞∑
n=2

O(
1

2K−1
)

1

n(n+ 1)
=

1

2
,

where we summed up the telescoping series
∑∞

n=2
1

n(n+1) in the last line.

4. Let f be a Lebesgue measurable function on [0, 1] such that f > 0 a.e. Suppose (En)
∞
n=1 is a

sequence of measurable sets with the property that∫
En

fdx→ 0.

Prove that m(En) → 0.

Proof. Let Sδ = {f ≤ δ} for δ > 0 and ε > 0. Since limδ→0+ m(Sδ) = 0, we can pick a δ such that

m(Sδ) < ε. Now, since
∫
En
fdx→ 0, we can pick N > 0 such that for all n ≥ N ,∫

En

fdx < εδ.

Now, we have

m(En ∩ Sc
δ) ≤

1

δ

∫
En∩Ec

δ

fdx ≤ 1

δ

∫
En

fdx < ε.

Finally, m(En) = m(En ∩ Sδ) +m(En ∩ Ec
δ) < m(Sδ) + ε < 2ε.

5. Recall that a point x is called isolated if {x} is an open set. Show that a compact metric space

with no isolated points is uncountable.

Proof. For any non-isolated x ∈ X, {x} is nowhere dense. We then apply Baire category theorem.

6. Recall that the graph of a function f : X → Y is the subset {(x, f(x)) : x ∈ X} ⊆ X × Y .

(a) State the closed graph theorem.

(b) Give an example of a discontinuous function f : R → R whose graph is closed. Here R has

standard topology.

(c) Give an example of a discontinuous linear function f : X → Y , where X and Y are both

normed spaces, whose graph is closed.
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1 JANUARY 2024 Texas A&M

Proof. (a) A linear map between two Banach spaces is bounded if and only if its graph is closed.

(b)

f(x) =

{
0, x = 0,
1
x , x ̸= 0.

(c) Let Y = (C[0, 1], ∥ · ∥∞) with the uniform norm as usual, X = (C[0, 1], ∥ · ∥1) with the L1 norm,

and f : X → Y the indentity map. Then f is unbounded as the L∞-norm is not bounded above

by the L1-norm and f is closed since the L∞-limit and L1-limit of any sequence must be the same

function (suppose they both exist.)

7. Let (X,M, µ) be a measure space with µ a probability measure. Show that ∥f∥p is an increasing

function of p for 0 < p ≤ ∞.

Proof. The case for infinity norm follows trivially. If 0 < p < q <∞, then by Hölder inequality

∥f∥p = ∥fp · 1∥1/p1 ≤ ∥fp∥1/pq/p∥1∥
1/p
q/(q−p) = ∥f∥q.

8. Let X and Y be reflexive Banach spaces such that Y ∗ is separable and there exists a continuous

linear transformation T from X to Y with kernel {0}. Prove that X∗ is separable.

Proof. As Y ∗ is separable,it suffices to show T ∗(Y ∗) is dense in X∗. Suppose T ∗(Y ∗) ̸= X∗, take a

nonzero x∗ ∈ X∗\T ∗(Y ∗) and pick a nonzero x ∈ X∗∗ = X such that x(x∗) = 1 and x vanishes on

T ∗(Y ∗) (Hahn-Banach). Now,

0 = (x, T ∗(y∗)) = y∗(Tx), ∀y∗ ∈ Y ∗,

therefore Tx = 0 as Y ∗ separate points in Y . As kerT = {0}, x = 0, contradiction.

9. Let P be the space of real-valued polynomials, and Pn the subspace of polynomials of degree at

most n. Fix a ∈ R.

(a) Show that for every n, there exists a unique gn ∈ Pn such that for all f ∈ Pn,

f(a) =

∫ 1

0

f(x)gn(x)dx.

(b) Show that there does not exist a Lebesgue integrable h ∈ L1([0, 1], dx) such that for all f ∈ P,

f(a) =

∫ 1

0

f(x)h(x)dx.

Proof. (a) Note that Pn is a finite dimensional vector space with inner product ⟨f, g⟩ =
∫
fgdx, so

it is a Hilbert space. Since any linear functional on finite dimensional space is bounded, the linear

map f 7→ f(a) is bounded and the statement follows from Riesz representation theorem.
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2 AUGUST 2023 Texas A&M

(b) Suppose there is such a h. Since P is dense in C[0, 1], we also have f(a) =
∫ 1

0
f(x)h(x)dx for all

f ∈ C[0, 1]. For any f ∈ C[0, 1], f ≥ 0, we have
∫ 1

0
f(x)h(x)dx = f(a) ≥ 0, so h(x)dx is a positive

Borel measure and in particular h ≥ 0 almost everywhere. Now let f(x) = (x− a)2,

0 =

∫ 1

0

(x− a)2h(x)dx,

which implies h = 0 a.e., a contradiction.

10. For f ∈ C[0, 1], denote co(f) the smallest closed convex subset of R containing {f(x) : 0 ≤ x ≤
1}. Let Φ be a linear mapping from C[0, 1] to R such that Φ(f) ∈ co(f) for each f . Prove that

lim
n→∞

Φ(
n2

(nx− 1)2 + n2
) = Φ(

1

1 + x2
).

Proof. First, note that as [0, 1] is connected and compact, f([0, 1]) is also connected and compact

and thus is a closed interval. In particular, co(f) is nothing but the image f([0, 1]).

Φ(
n2

(nx− 1)2 + n2
)− Φ(

1

1 + x2
) = Φ(

1

1 + (x− 1
n )

2
− 1

1 + x2
)

=Φ

( 2x
n − 1

n2

(1 + (x− 1
n )

2)(1 + x2)

)
=

1

n
Φ

(
2x− 1

n

(1 + (x− 1
n )

2)(1 + x2)

)
.

Since
2x− 1

n

(1+(x− 1
n )2)(1+x2)

∈ [−1, 2] for all x and n, we have |Φ
(

2x− 1
n

(1+(x− 1
n )2)(1+x2)

)
| ≤ 2 for all n. In

particular, Φ( n2

(nx−1)2+n2 )− Φ( 1
1+x2 ) → 0 as n→ ∞.

2 August 2023

1. Let f : (0, 1) → R be a Lebesgue integrable function. For any x ∈ (0, 1) define g(x) =
∫ 1

x
f(t)
t dλ(t).

Prove that g : (0, 1) → R is integrable and
∫ 1

0
fdλ =

∫ 1

0
gdλ.

Proof. Since

∫
(0,1)×(0,1)

1t≥x · |f(t)|
t

dλ(t)dλ(x) =

∫ 1

0

|f(t)|dλ(t) = ∥f∥1, we can apply Fubini.

2.

(1) Let (X,M, µ) be a measure space and let (fn)n≥1 be a sequence of measurable functions on X.

Define what it means that (fn)n≥1 converges in measure to a measurable function g.

(2) Give an example of a sequence of measurable functions that converges pointwise but not in

measure.

(3) Let (X,M, µ) be a finite measure space and let (fn)n≥1 be a sequence of measurable functions

on X that converges pointside to g. Show that (fn)n≥1 converges in measure to g.

7



2 AUGUST 2023 Texas A&M

Proof. (2) Consider R with the Lebesgue measure. Take fn(x) := 1x≥n.

(3) limn→∞ fn(x) = g(x) means that ∀ε > 0,∃N ≥ 1,∀n ≥ N, |fn(x)− g(x)| < ε. Therefore, the set

of converging points of (fn)n≥1 is

X =
⋂
ε

⋃
N≥1

⋂
n≥N

{|fn − g| < ε}.

In particular, for all ε > 0,
⋃

N≥1

⋂
n≥N{|fn − g| < ε} = X. Taking the complement, one get

µ(
⋂
N≥1

⋃
n≥N

{|fn − g| ≥ ε}) = 0.

Since
⋃

n≥N{|fn − g| ≥ ε} is decreasing for N and µ is finite, we have limN→∞ µ(
⋃

n≥N{|fn − g| ≥
ε}) = µ(

⋂
N≥1

⋃
n≥N{|fn − g| ≥ ε}) = 0. Therefore µ({|fN − g| ≥ ε}) ≤ µ(

⋃
n≥N{|fn − g| ≥ ε}) →

0.

3.

(1) Let {Xi}i∈I be a collection of topological space. Define what is the product topology on the

Cartesian product
∏

i∈I Xi.

(2) Prove that a compact metric space is separable.

(3) Show that every compact metric space is homeomorphic to a closed subset of [0, 1]N (equipped

as usual with the product topology).

Proof. (2) For each n ≥ 1, we can pick a finite set Fn, such that
⋃

x∈Fn
B1/n(x) is the whole space.

Now
⋂

n≥1 Fn is a countable dense subset, as for any ball Br(x0), we can pick n such that n <

1/(2r) and a y ∈ Fn such that x0 ∈ B1/n(y) which then implies y ∈ Br(x0).

(3) WLOG assume diam(X) ≤ 1. Let (xn)n≥1 be an arrangement of a countable dense subset of X.

Consider the map i : X → [0, 1]N, i(x) = (d(x, xn))n≥1. i is injective: we have x = limk xnk
for

some sequence (nk)k≥1, and if d(x, xn) = d(y, xn) for all n, then we also have y = limk xnk
= x. i is

continuous by the property of the product topology as each of its coordinate d(·, xn) is continuous.
Therefore i is injective continuous function between compact Hausdorff spaces, which must be a

homeomorphism onto its image (which is compact).

4. In this problem, recall the duality L1(R)∗ = L∞(R). Let S = {f ∈ L∞(R) : λ({x : f(x) >
1

1+e−|x| } = 0)}.

(1) State the Banach-Alaoglu theorem.

(2) Show that S is a weak∗-compact subset of L∞(R).

(3) Is S a norm-compact subset of L∞(R)?

8



2 AUGUST 2023 Texas A&M

Proof. (2) Since S is contained in the unit ball of L∞(R) which is weak∗-compact, it suffices to

show that S is weak∗-closed. For this we simply note that

f ∈ S ⇐⇒ ∀g ∈ L1(R), g ≥ 0 a.e.,

∫
g(

1

1 + e−|x| − f)dλ ≥ 0

which is a property preserved under weak∗-limit.

(3) No. Consider fn = 1
21x≥n, then ∥fn − fm∥∞ = 1

2 for n ̸= m, hence (fn)n≥1 has no converging

subsequence.

5. Let k ∈ C([0, 1]× [0, 1]) and f ∈ C([0, 1]) be real-valued continuous functions. Define the function

T (f) : [0, 1] → R:

T (f)(x) =

∫ 1

0

k(x, y)f(y)dy, x ∈ [0, 1].

(1) Show that T (C[0, 1]) ∈ C([0, 1]).

(2) Show that T maps bounded sets to subsets of compact sets.

Proof. (1) |T (f)(x) − T (f)(x′)| ≥
∫ 1

0
|k(x, y) − k(x′, y)||f(y)|dy. Apply the uniform continuity of k.

(2) Use Arzelà-Ascoli Theorem.

6. Let f : (0,∞) → R be continuous and such that for all x > 0 the sequence (f(nx))n≥1 converges

to 0. Show that limx→∞ f(x).

Proof. Writing ∀x, limn→∞ f(nx) = 0 in terms of set, we have

R =
⋂
ε

⋃
N≥1

⋂
n≥N

{x : |f(xn)| ≤ ε}.

So for each fixed ε > 0,
⋃

N≥1

⋂
n≥N{x : |f(xn)| ≤ ε} = R. Note that for each N , EN =

⋂
n≥N{x :

|f(xn)| ≤ ε} is closed, and (EN )N≥1 is increasing.

Claim: There exists N0, a, b ∈ R, a < b such that [a, b] ⊆ EN0
.

To see this one can directly apply Baire Category theorem, or one can prove this directly: Assume

the claim is not true. Since Ec
N is open, it is a union of countable disjoint open intervals. For N =

1, take [a1, b1] ⊂ (a′1, b
′
1) ⊆ Ec

1. For N ̸= 2, as (a1, b1) is not contained in E2, (a1, b1) ∩ Ec
2 is

nonempty open subset. One can then take [a2, b2] ⊂ (a′2, b
′
2) ⊆ Ec

2 ∩ (a1, b1). Continuing this pro-

cess, we obtain a sequence of decreasing closed interval [aN , bN ] ⊂ Ec
N . By the completeness of R,

∩N [aN , bN ] must be empty, contradicting to the fact that ∩NE
c
N = ∅.

Now, let Fε = {x : |f(x)| < ε}. We have nEN ⊆ Fε for all n ≥ N . In particular, as [a, b] ⊆ EN0
,

[na, nb] ⊆ Fε for all n ≥ N0. One can then easily check that there exists a n0 ≥ N0 such that

[n0a,∞) ⊆
⋃

n≥n0
[na, nb] ⊆ Fε. (Indeed, one simply need to take n0 to be the numerator of a

rational number n0

m0
< a

b .)

7.
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2 AUGUST 2023 Texas A&M

(1) State the Hahn-Banach theorem (for sublinear and linear functionals on a real vector space).

For the next two questions, X is a real normed vector space and we denote by X∗ the dual

space.

(2) Let C be a convex open set in X that contains 0 and define for all x ∈ X, pC(x) = inf{α > 0 :

x ∈ αC}. Show that pC is a sublinear functional and C = {x ∈ X : pC(x) < 1}.

(3) Let C be an open, convex, nonempty subset of X and x0 /∈ C. Show that there is x∗ ∈ X∗ such

that x∗(z) < x∗(x0) for all z ∈ C.

Proof. (1) Sublinear: p(x + y) ≥ p(x) + p(y), p(tx) = tp(x) for all x, y ∈ X, t ≥ 0. HB thm: If

f is a linear functional on a linear subspace Y of X such that f ≤ p on Y , then there exists linear

extension f̃ of f on X such that f̃ ≤ p on X.

(2) pC(tx) = tpC(x) is easy to show. If pC(x) = α, pC(y) = β, then for any ε > 0, x ∈ (α + ε)C

and y ∈ (β + ε)C. Therefore x + y ∈ (α + β + 2ε)C and hence pC(x + y) ≥ α + β. It is clear that

{x ∈ X : pC(x) < 1} ⊆ C. To see the other direction, take x ∈ C. As C is open, there exists a δ > 0

such that (1 + δ)x is still in C, therefore pC(x) ≤ 1/(1 + δ) < 1.

(3) WLOG assume 0 ∈ C. Consider the linear functional f : Rx0 → R, f(tx0) = tpC(x0). Then

f ≤ pC on Rx0. Let f̃ be a linear extension of f such that f̃ ≤ pC . Then we have

∀z ∈ C, f̃(z) ≤ pC(z) < 1 ≤ pC(x0).

Finally, we need to check that f̃ ∈ X∗. Let Bδ(0) ⊆ C ∩ (−C) be an open ball centered at 0 ∈ X,

then by the previous inequality −1 < f̃(z) < 1 for all z ∈ Bδ(0). In particular, f̃(B1(0)) ⊆ (1/δ, 1/δ)

which implies the boundedness of f̃ .

8.

(1) Given a Banach space (X, ∥ · ∥) and a sequence (xn)n≥1 ∈ X. What does it mean that (xn)n≥1

converges weakly to x ∈ X?

(2) Let K be a compact Hausdorff space. Show that a sequence (fn)n≥1 in C(K) converges weakly

iff (fn)n≥1 is bounded and converges pointwise.

Proof. See Problem 7, January 2019.

9. Let 1 < p < q < r,∞ and f ∈ [0, 1] → R be measurable. Show that

∥f∥q ≤ ∥f∥sp∥f∥1−s
r

where s =
1
q−

1
r

1
p−

1
r

.

Proof. Apply the generalized Hölder inequality ∥gh∥r′ ≤ ∥g∥p′∥h∥q′ by taking
1

r′
=

1

p′
+

1

q′
with

g = fs, h = f1−s, p′ = p/s, q′ = r/(1− s) and r′ = q.

10
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10.

(1) Give the definition of an orthonormal basis in a Hilbert space.

(2) Show that if a Hilbert space has a countably infinite orthonormal basis then every infinite or-

thonormal basis is countable.

Proof. (1) {en}n∈I family of unit vector such that ⟨en, em⟩ = δm,n and span{en}n∈I is dense in

H. (2) If H has an countable orthonormal basis, then it is separable. But if H has an uncountable

orthonormal basis, then it is not separable: let {en}e∈I be an uncountable orthonormal basis, then

{B1/3(en)}n∈I is an uncountable family of disjoint open balls.

3 January 2023

1. Show that there exists a constant c > 0 (and give its value) so that for every measurable function

f : R → [0,∞) we have ∫
R
f4dλ = c

∫
[0,∞)

t3λ({f ≥ t})dλ(t).

Proof. By Tonelli theorem,∫
[0,∞)

4t3λ({f ≥ t})dλ(t) =
∫
R×[0,∞)

4t3 · 1f(s)≥tdλ(s)dλ(t)

=

∫
R
f(s)4dλ(s) =

∫
R
f4dλ.

2. Let (X,M, µ) be a measure space. Let (fn)n∈N be a sequence of integrable functions from X to

R such that limn→∞
∫
X
|fn − f |dµ for some integrable function f : X → R. Show that for all ε > 0

there is A ∈ M satisfying µ(A) <∞ and for all n ≥ 1,∫
X\A

|fn|dµ < ε.

Proof. Let us fix ε > 0. Since f · 1f≥m → 0 a.e. when m → ∞, we have limm

∫
X\{f≥m} |f |dµ = 0.

Therefore, we can take B = {f ≥ m0} for a large enough m0, such that
∫
X\B |f |dµ < ε/2. As f is

integrable, µ(B) ≤ ∥f∥1/m0 < ∞. Also as limn→∞
∫
X
|fn − f |dµ, we can take N ≥ 1 such that for

all n ≥ N ,
∫
X\B |fn − f |dµ ≤

∫
X
|fn − f |dµ < ε/2. In particular,∫

X\B
|fn|dµ ≤

∫
X\B

|fn − f |dµ+

∫
X\B

|f |dµ < ε, ∀n ≥ N.

Now, for each fn with n < N , just like for f , we can pick a measurable subset Bn with finite mea-

sure, and
∫
X\Bn

|fn|dµ < ε. Finally, A := B ∪
⋃

n<N Bn satisfies the statement.

11



3 JANUARY 2023 Texas A&M

3. Let (fn)n∈N be a sequence of measurable functions from [0, 1] to R.

(1) Show that if limn→∞ |fn − f |dλ = 0 for some integrable f , then (fn)n∈N converges in λ-measure

to f .

(2) Show that if (fn)n∈N converges λ-almost everywhere towards a measurable function f : [0, 1] →
R, then (fn)n∈N converges in λ-measure to f .

(3) Does the conclusion in assertion (2) still hold if the functions are defined on R instead?

Proof. (1) For all ε > 0, λ({|fn − f | > ε}) ≤
∫
R |fn − f |dλ/ε → 0 as n → ∞. For (2), (3), see

Problem 2 from August 2023.

4. Recall that a collection F of measurable functions from [0, 1] to R is said to be uniformly inte-

grable if

lim
λ(A)→0

sup
f∈F

∫
A

|f |dλ = 0.

(1) Given a non-negative g ∈ L1([0, 1]), show that Fg := {f ∈ L1([0, 1]) : |f | ≤ g} is uniformly

integrable.

(2) Show that the closed unit ball of L2([0, 1]) is a uniformly integrable subset of L1([0, 1]).

Proof. (1) For all measurable A, f ∈ Fg,
∫
A
|f |dλ ≤

∫
A
gdλ, hence

lim
λ(A)→0

sup
f∈Fg

∫
A

|f |dλ = lim
λ(A)→0

∫
A

gdλ = 0,

where the last step is due to dominant convergence theorem.

(2) For each f with ∥f∥2 ≤ 1, one have by Cauch-Schwarz inequality∫
A

|f |dλ ≤ ∥f∥2(λ(A))1/2 ≤ (λ(A))1/2,

which converges uniformly to 0 as λ(A) → 0.

5.

(1) Show that a compact metric space is separable.

(2) Prove or disprove that the unit ball of ℓ∞ equipped with the norm topology is separable.

(3) Prove or disprove that the unit ball of ℓ∞ equipped with the weak∗ topology is separable.

Proof. (1) See Problem 3 from August 2023. (2) FALSE, for any subset S ⊆ N, let fS := (1n∈S)n.

Then (fS)S is an uncountable family such that ∥fS − fS′∥ = 1 for all S ̸= S′, hence (B1/3(fS))S is

an disjoint uncountable family of open balls, which forces the unit ball of ℓ∞ to be non-separable in

norm.

12
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(3) TRUE, by Banach-Alaoglu, the unit ball of ℓ∞ is weak∗-compact. Also, since the predual ℓ1 of

ℓ∞ is separable, (ℓ∞)1 has a countable family of separating seminorms in the weak∗ topology, and

hence has a translation-invariant metric. In particular, the unit ball of ℓ∞ with weak∗ topology

is a compact metric space and thus is separable. See Ch. 5, Exercise 50 from Folland. Indeed, let

(sn)n≥1 be a countable dense subset of (ℓ1)1, and define the metric on (ℓ∞)1:

d(f, g) :=
∑
n≥1

1

2n
|(sn, f − g)|.

Claim: the topology defined by d coincide with the weak∗ topology on (ℓ∞)1.

First, assume that d(fm, f) → 0 when m → 0 with f, fm ∈ (ℓ∞)1. For every s ∈ (ℓ1)1 and φ > 0,

we can choose a sn such that ∥sn − s∥1 ≤ ε/4. Choose also a M > 0, such that for all m ≥ M ,

d(fm, f) ≤ ε2−n−1. We have then |(sn, fm − f)| ≤ 2nd(fm, f) ≤ ε/2. Therefore,

|(s, fm − f)| ≤ |(sn − s, fm − f)|+ ε/2 ≤ 2∥sn − s∥1 + ε/2 = ε,

which implies that fm → f in the weak∗ topology.

On the other hand, assume that fm → f in the weak∗ topology. For each ε > 0, choose a N > 0

such that 1
2N−2 ≤ ε. For each i ≤ N , as limm→∞(si, fm − f) = 0, we can choose a M > 0 such that

|(si, fm − f)| ≤ ε/2 for all m ≥M and i ≤ N . Now, for all m ≥M ,

d(fm, f) =

N∑
n=1

1

2n
|(sn, fm − f)|+

∑
n≥N+1

1

2n
|(sn, fm − f)| ≤

N∑
n=1

1

2n
ε/2 +

1

2N−1
≤ ε.

6. For f ∈ C[0, 1], let

∥f∥L = |f(0)|+ sup
0≤x<y≤1

|f(y)− f(x)|
y − x

(1) Show that {f ∈ C[0, 1] : ∥f∥L ≤ 1} is compact in C[0, 1].

(2) Is the set {f ∈ C[0, 1] : ∥f∥L <∞} dense in C[0, 1] or not?

Proof. First, notice that for all f ∈ C[0, 1], x ∈ [0, 1],

|f(x)| ≤ |f(0)|+ |x− 0| |f(x)− f(0)|
|x− 0|

≤ 2∥f∥L.

And for x ̸= y, we have furthermore |f(x)− f(y)| ≤ |x− y|∥f∥L.

(1) Let S = {f ∈ C[0, 1] : ∥f∥L ≤ 1}. Then S is uniformly bounded by 2 and uniformly equicon-

tinuous. Hence by Arzelà-Ascoli theorem S is precompact. It remains to show that S is closed. But

since for each 0 ≤ x < y ≤ 1, the map ix,y : C[0, 1] → R, ix,y(f) := |f(0)| + |f(y)−f(x)|
y−x is norm-

continuous, we have

S =
⋂

0≤x<y≤1

i−1
x,y((−∞, 1]),

which is closed.

13
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(2) It is dense, as the set contains the set of all polynomials which is already dense in C[0, 1].

7. Suppose X is a real Banach space and Y ⊆ X is a proper subspace. Show that the following are

equivalent:

(1) For every z ∈ X such that z /∈ Y , there exists a bounded linear functional ϕ on X such that

ϕ(z) = 1 and, for all y ∈ Y , ϕ(y) = 0.

(2) Y is closed in X.

Proof. (1) =⇒ (2): For each z ∈ X\Y , pick a ϕz ∈ X∗ such that ϕz(z) = 1 and ϕz = 0 on Y . Then

Y =
⋂

z∈X\Y ϕ
−1
z ({0}) which is closed.

(2) =⇒ (1): Use Hahn-Banach theorem.

8.

(1) Let X be a normed vector space and Y be a subspace of X. Show that if Y has non-empty in-

terior then Y = X.

(2) Let X be a banach space and T be a bounded operator on X. Show that if for all x ∈ X, there

exists n ∈ N such that Tn(x) = 0, then there exists d ∈ N such that for all x ∈ X, T d(x) = 0.

Proof. (1) Since Y is a subspace, if Y has non-empty interior, then Y contains a neighborhood of 0.

In particular, Y contains an open ball of X and thus must contains X.

(2) Consider Sn = {x ∈ X : Tn(x) = 0} then X = ∪n≥1Sn. Apply Baire category theorem and

(1).

9. Let (X, ∥ · ∥) be a normed vector space. A sequence (xn)n∈N in X is said to be weakly Cauchy if

for all x∗ ∈ X∗, (x∗(xn))n∈N is a Cauchy sequence.

(1) Show that a weakly Cauchy sequence (xn)n∈N in X is bounded.

(2) Show that for every weakly Cauchy sequence (xn)n∈N in X, there exists x∗∗ ∈ X∗∗ such that

(xn)n∈N weak∗-converges to x∗∗ and ∥x∗∗∥ ≤ lim infn→∞ ∥xn∥.

Proof. (1) Banach-Steinhaus. (2) Consider the linear map f : X∗ → R, f(x∗) = limn→∞ x∗(xn).

Then by (1), f is bounded, hence f ∈ X∗∗ and by definition xn weak∗-converges to f . Finally, the

norm bound follows from the inequality

|f(x∗)| = | lim
n→∞

x∗(xn)| = lim
n→∞

|x∗(xn)| = lim inf
n→∞

|x∗(xn)| ≤ lim inf
n→∞

∥x∗∥∥xn∥, ∀x∗ ∈ X∗

10. Let (gn)n∈N be a sequence of non-negative continuous functions on [0, 1] such that for each k ∈
N ∪ {0}, the limit limn→∞

∫ 1

0
tkgn(t)dλ(t) exists. Show that there exists a unique finite positive

Radon measure µ on [0, 1] such that for all continuous functions on [0, 1],
∫ 1

0
fdµ = limn→∞

∫ 1

0
f(t)gn(t)dλ(t).

14
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Proof. Let M ≥ 0 be an upper bound of
∫ 1

0
gn(t)dλ(t). The linear map T : polynomials → R,

T (tk) := limn→∞
∫ 1

0
tkgn(t)dλ(t) is bounded by M . We denote the bounded extension of T to

C[0, 1] again by T . By Riesz representation theorem, T must coincide with some finite positive

Borel measure µ (as [0, 1] is locally compact Hausdorff, every finite Borel measure is Radon).

4 August 2022

Problem 1. Let f : (0, 1) → R.

(a) Give the definition of absolute continuity of f .

(b) Show that if E ⊂ (0, 1) has Lebesgue measure 0 and f is monotone and absolutely continuous,

then f(E) has Lebesgue measure zero.

Proof. (a) Check Folland.

(b) (WLOG let f be monotone increasing.) Let Un = ⊔∞
j=1(a

n
j , b

n
j ) be a disjoint union of open inter-

vals such that m(Un) < 1/n and E ⊂ Un. Then since f is absolutely continuous, for all k ∈ N

k∑
j=1

f(bnj )− f(anj ) < ε,

so by taking a limit in k
∑∞

j=1 f(b
n
j )− f(anj ) ≤ ε. Note then (since f is monotone) that m(f(Un)) ≤

ε as well. Since f(E) ⊂ f(Un), m(f(E)) = 0.

Problem 2. Suppose X is a compact Hausdorff space and f : X → R is continuous. Let ε >

0. Show the existence of an open set U ⊂ X and a continuous function g : X → R such that

f−1({0}) ⊂ U , g(U) = {0}, and ∥g − f∥u < ε, where the norm is the uniform norm.

Proof. Let U := f−1((− ε
4 ,

ε
4 )) (note f

−1({0}) ⊂ U) and V := f−1((− ε
2 ,

ε
2 )). Then U ∩ V c = ∅, and

by Urysohn there is some h ∈ C(X) such that h ≡ 1 on V c and h ≡ 0 on U .

Define g = fh. Then g is continuous and g(U) = {0}. Also fh|V c = f |V c and |(fh)(x)| ≤ |f(x)| for
all x ∈ V . Hence

∥fh− f∥∞ < 2(
ε

2
) = ε.

Problem 3. Let X be a complete metric space that is uncountable but has a countable dense subset

D. Suppose f : X → X satisfies f(X\D) ⊂ D and f(D) ⊂ X\D. Show that f cannot be everywhere

continuous on X.

Proof. This is similar to August 2021 #9, but only the first solution can be adapted. WLOG X

is connected; otherwise we can consider an uncountable connected component of X, which would

itself be a complete metric space. (If all connected components of X are countable, then since each

component must contain at least one element of D (since D is dense in X) it must follow that X is

countable.) Let D = (di)
∞
1 , and note

⋃
i f

−1({di}) = X\D. If f is everywhere continuous, each

15
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f−1({di}) is closed (since metric spaces are T1) and nowhere dense (any open set in f−1({di}) must

contain an element in D). So X =
⋃

i{di} ∪
⋃

i f
−1({di}) is a countable union of nowhere dense

sets (since {di} is not open; otherwise X is not connected), and Baire Category Theorem yields a

contradiction. Our only assumption was that f was everywhere continuous, so this must be untrue.

Problem 4. Either give an example of a σ-finite measure space (X,M, µ) with an uncountable

family (Aλ)λ∈Λ of pairwise disjoint measurable sets Aλ ∈ M, each with µ(Aλ) > 0, or prove that

such an example cannot exist.

Proof. By #1 in January 2010, we should believe this cannot exist, and that proof can be gener-

alized. Let X =
⋃∞

i=1Xi where µ(Xi) < ∞ for all i. Let (Aj
i )j be pairwise disjoint in Xi; then

{j : m(Aj
i ) > 1/n} is finite since µ(Xi) < ∞, so {j : m(Aj

i ) > 0} =
⋃

n{j : m(Aj
i ) > 1/n} is

countable. Now let Ai be disjoint in X; then {i : m(Ai ∩ Xj) > 0} is countable by the above, so

{i : m(Ai) > 0} =
⋃

j{i : m(Ai ∩Xj) > 0} is countable.

Problem 5. Let V ⊂ C[0, 1] be the linear span of the polynomials {x2n : n ∈ N, n > 0}. For which

values of p, 1 ≤ p ≤ +∞, is V dense in Lp([0, 1]), (defined using Lebesgue measure on [0, 1], of

course)? Prove that your answer is correct.

Proof. By Stone-Weierstrass, V is uniformly dense in {f ∈ C[0, 1] : f(0) = 0}. Now uniform conver-

gence implies Lp-convergence for all p, and it is easy to find continuous functions (fn) that converge

to 1 in Lp for all 1 ≤ p < ∞ (take fn ≡ 1 on [1/n, 1] and fn(x) = nx on [0, 1/n]). Note C[0, 1] is

dense in Lp[0, 1] for 1 ≤ p <∞, so in fact C[0, 1] is dense in Lp[0, 1] for all 1 ≤ p <∞.

However, if span{x2n : n > 0} were dense in L∞[0, 1], then by taking the (Q + Qi)-span of {x2n :

n > 0}, which is uniformly dense (and hence Lp-dense) in the complex span, it would follow that

L∞[0, 1] is separable. But L∞[0, 1] is not separable, as {1[r,r′]}r<r′∈[0,1] is an uncountable collection

of L∞[0, 1] functions each of distance 1 away from each other (see August 2017 #4a). So any dense

collection of L∞[0, 1] must contain an element of the 1/2-ball around each of these functions (which

are disjoint) and hence must be uncountable.

Problem 6. Let T : X → Y be a bounded linear operator between Banach spaces. Let X∗ and

Y ∗, respectively, denote the dual spaces consisting of bounded linear functionals of X and Y . Let

T ∗ : Y ∗ → X∗ by defined by (T ∗ϕ)(x) = ϕ(Tx) for ϕ ∈ Y ∗ and x ∈ X. (You may assume and need

not prove that T ∗ is well defined.)

(a) Show that T ∗ is linear and bounded and satisfied ∥T ∗∥ = ∥T∥.

(b) Suppose that T is onto Y and show that there exists c > 0 such that ∥T ∗ϕ∥ ≥ c∥ϕ∥ for all

ϕ ∈ Y ∗.

Proof. (a) These are all Folland problems and have been proven elsewhere.

(b) It is also a Folland problem (Exercise 22c of Chapter 5) that whenever T is onto, T ∗ is injective.

We can also show the range of T ∗ is closed in the following way. Let (ϕn) in the range of T ∗ con-

verge to ϕ ∈ X∗, and let ψn ∈ Y ∗ be such that T ∗ψn = ψn ◦ T = ϕn. Then ψn ◦ T → ϕ in X∗. Now
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T is onto, so (ψn) is in fact Cauchy in Y ∗, and therefore by completeness there exists ψ = limn ψn.

Since T ∗ is continuous by (a),

T ∗ψ = limT ∗ψn = limϕn = ϕ.

This proves the claim. Hence the range of T ∗ is a Banach space in its own right, and the Banach

isomorphism theorem applies and yields a bounded operator (T ∗)−1 : ran(T ∗) → Y ∗. Hence for

ϕ ∈ Y ∗ there is some ψ ∈ X∗ such that (T ∗)−1(ψ) = ϕ, and

∥(T ∗)−1(ψ)∥ ≤ ∥(T ∗)−1∥∥ψ∥ ⇒ ∥T ∗(ϕ)∥ ≥ 1

∥(T ∗)−1∥
∥ϕ∥.

Problem 7. Let X be a compact Hausdorff space and let C(X) be the Banach space of all contin-

uous functions from X to C, endowed with the usual uniform norm. Suppose (fn)
∞
n=1 is a bounded

sequence in C(X). Show that this sequence converges to 0 in the weak topology on C(X) if and only

if it converges pointwise to 0, namely,

∀x ∈ X lim
n→∞

fn(x) = 0.

Proof. The most frequently occurring qualifying exam problem has returned. :) See elsewhere, such

as Problem 3 of August 2015.

Problem 8. Evaluate the limit

lim
n→∞

∫
E

(
1 +

x

n

)n e−x

(x2 − 1)
dλ(x),

where λ is Lebesgue measure on R and E = [2,∞). Be sure to justify your assertions.

Using DCT. Note that (
1 +

x

n

)n
= en log(1+ x

n ) ≤ e(n
x
n ) = ex.

In the inequality above we use the fact that, for any y > 0, log(1 + y) < y. (We see these two

quantities are equal when y = 0, and [log(1 + y)] = 1
1+y < 1 = y′ when y > 0.)

Hence the sequence of functions fn(x) =
(
1 + x

n

)n e−x

x2−1 is bounded above by g(x) = 1
x2−1 . Using

partial fraction decomposition (see bottom of MCT proof below) we see that g ∈ L1(E), so by DCT

we have that

∂

∂n
an(x) = (1 +

x

n
)n[log(1 +

x

n
)− x

n+ x
] = (1 +

x

n
)n[log(

n+ x

n
) +

n

n+ x
− 1] = log(3)/2.

Using MCT. Claim: the sequence of functions

an(x) :=
(
1 +

x

n

)n

17
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is increasing in n when x ≥ 2. Take the partial derivatives with respect to n to get

∂

∂n
an(x) = (1 +

x

n
)n[log(1 +

x

n
)− x

n+ x
] = (1 +

x

n
)n[log(

n+ x

n
) +

n

n+ x
− 1].

Now note the function f(x) = log(x) + 1
x ≥ 1 for all x ≥ 1. This is since log(1) + 1

1 = 1 and

f ′(x) = 1
x − 1

x2 = x−1
x2 > 0 for x > 1. Hence

log(
n+ x

n
) +

n

n+ x
− 1 ≥ 0.

So ∂
∂nan(x) ≥ 0 for all x ≥ 2, proving the claim. Now we may apply MCT and get

lim
n→∞

∫
E

(
1 +

x

n

)n e−x

x2 − 1
dx =

∫
E

1

x2 − 1
dx.

(We use that limn→∞(1 + x
n )

n = limm→∞(1 + 1
m )mx by setting m = n

x .) We further note 1
x2−1 =

1
2(x−1) −

1
2(x+1) , so∫
E

1

x2 − 1
dx =

1

2

∫
E

[
1

x− 1
− 1

x+ 1

]
dx =

1

2
[log(x− 1)− log(x+ 1)]∞2 = log(3)/2.

(We use that limb→∞[log(b− 1)− log(b+ 1)] = 0.)

Problem 9. (a) State the Principle of Uniform Boundedness.

(b) Suppose that X and Y are real Banach spaces and that Φ : X × Y → R is bilinear, meaning that

it is linear in each variable separately. Suppose that

(i) for all x ∈ X there exists Ax ≥ 0 such that

∀y ∈ Y |Φ(x, y)| ≤ Ax∥y∥

(ii) for all y ∈ Y there exists By ≥ 0 such that

∀x ∈ X |Φ(x, y)| ≤ By∥x∥.

Show there is a constant K ≥ 0 such that

∀x ∈ X, ∀y ∈ Y |Φ(x, y)| ≤ K∥x∥∥y∥.

Proof. (a) Folland. (b) Basically Folland, exercise 39 of Chapter 5.

Problem 10. For every natural number n, let Vn denote the subspace of all polynomials of degree

≤ n, regarded as a subspace of C[0, 1]. Let

V∞ =
⋃
n≥1

Vn.

For which n ∈ {1, 2, . . . ,∞} does there exist a bounded linear functional ϕ on C[0, 1] such that

∀q ∈ Vn ϕ(q) = q′(1) ?
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Justify your answer.

Proof. See Problem 4 of January 2013, noting the slight alteration.

5 January 2022

Problem 1. Prove or disprove that if (fn)
∞
n=1 is a sequence of Lebesgue integrable functions

fn : [0, 1] → R such that lim
n→∞

∥fn∥L1(R) = 0,

then for at least one value x ∈ [0, 1] we have

lim
n→∞

fn(x) = 0.

Proof. For n = 2m + k for m ∈ N≥0, k ∈ [2m], we define

fn(x) = 1[ k−1
2m , k

2m ].

Then fn(x) ̸→ 0 for any x; indeed, fn(x) = 1 for at least one value in 2m ≤ n < 2m+1. But
∫
fn =

1
2m . This counterexample disproves the problem.

Problem 2. Let A be the set of all real-valued functions on [0, 1] for which f(0) = 0 and

|f(t)− f(s)|4 ≤ t− s for all 0 ≤ s < t ≤ 1.

Prove that A is a compact subset of L2[0, 1]. Don’t forget to justify that A is closed in L2[0, 1].

Proof. The set-up of the problem seems to suggest using Arzela-Ascoli I, but we are asking for this

collection to be compact in L2[0, 1], not C[0, 1]. However, A ⊂ C[0, 1]! This is because if s → t in

[0, 1], then |f(t) − f(s)|4 → 0 by the condition, so |f(t) − f(s)| → 0 and f(s) approaches f(t).

Also, convergence in C[0, 1] implies convergence in L2[0, 1]. (If fn → f uniformly, it is easy to find

a dominating function for fn and use DCT: if we take g := max{f1, . . . , fN+1, |fN | + 1} where N is

chosen such that n > N implies |fn(x)− f(x)| < 1 for all x ∈ [0, 1], then |fn| ≤ g and g is in L2.) So

if we show A is compact in C[0, 1], then A is compact in L2[0, 1] as well. (Continuous functions on

a compact interval are bounded, so they are in L2. If (fα) ⊂ A, then there is a subnet converging

to f ∈ A ⊂ C[0, 1], so this subnet converges to f in A ⊂ L2[0, 1] as well by the above.) So Arzela-

Ascoli I works fine; we will also need to show A is closed.

Let ε > 0 and choose δ < ε4. Then If |t − s| < δ, for any f ∈ A we have |f(t) − f(s)| ≤ |t − s|1/4 <
ε. This guarantees equicontinuity, and in fact |f(t)|4 = |f(t) − f(0)|4 ≤ t ≤ 1 for all t ∈ [0, 1],

so |f(t)| ≤ 1, giving a pointwise (in fact uniform!) bound for functions in A. Finally, if fn → f

uniformly for (fn) ⊂ A, we have |f(t) − f(s)|4 = limn |fn(t)− fn(s)|4 ≤ t − s (since | · | and (·)4 are

continuous functions), so f ∈ A.

Problem 3. Let E be a subset of R that has positive Lebesgue measure and set

S = {f ∈ L1(R) : 1Ef = 0 a.e.}.
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Prove or disprove that S is closed in L1(R).

Proof. Let (fn) ⊂ L1(R) such that 1Efn = 0 a.e. be chosen such that fn → f ∈ L1(R). We will

attempt to show f ∈ S, thus proving the problem statement.

Let (fnk
) ⊂ (fn) be chosen such that fnk

→ f a.e. Then since fnk
= 0 a.e. on E and fnk

→ f a.e.,

in fact f = 0 a.e. on E as well. So f ∈ S.

Problem 4. Prove of disprove that there is a sequence of real polynomials (pn)
∞
n=1 such that

lim
n→∞

∫ 1

0

|pn(t)| dt = 1,

but such that for all t ∈ [0, 1], limn→∞ pn(t) = 0.

Proof. First note that ∫ 1

0

xn(1− x) dx =
1

n+ 1
− 1

n+ 2
=

1

(n+ 1)(n+ 2)
.

Define fn(x) := (n+ 1)(n+ 2)xn(1− x); then by the above
∫ 1

0
|pn(x)| dx = 1. Now xn will dominate

the behavior of this function for large enough n (polynomial growth is dominated by exponential

growth) whenever x < 1, and xn → 0 in this case. Of course fn(1) = 0 for all n, so we have proven

the problem statement.

Problem 5. (a) Show (directly from the relevant definitions) that every separable metric space is a

2nd countable topological space.

(b) Suppose µ is a Borel measure on a 2nd countable topological space X. Show that there exists a

largest subset U of X that is both open and µ-null.

(c) Given an example of a topological space X and a Borel measure µ on X for which there is no

largest subset of X that is both open and µ-null.

Proof. Before beginning we note the similarity between part (b) of this problem and Problem 2 of

Chapter 7 in Folland. In particular, the complement of this largest subset is called the support of µ.

(a) Call this set X. Let (xi)
∞
1 be a countable dense subset of X, and consider the collection (B(n−1, xi))

∞
i,n=1.

This collection is certainly countable. For any x ∈ X, there is some sequence of (xi) converging to

x, so x ∈ B(1, xi) for large enough i. Also, if x ∈ U for U open in X, then B(ε, x) ⊂ U for some

ε > 0. Choose xi such that d(xi, x) < ε/2 and pick n such that n−1 < ε/2; then B(n−1, xi) ⊂
B(ε, x) ⊂ U . So this is a countable basis for X.

(b) Let C be the collection of all open, µ-null sets in the countable basis for X. (If there are none,

then by monotonicity µ > 0 on all open sets, so ∅ is the desired largest subset.) Take the union of

all elements Ci in C (which is countable!); then µ(
⋃
Ci) ≤

∑
i µ(Ci) = 0. Suppose V is also open

and µ-null; then V =
⋃
Uj for Uj in the countable basis for X, and µ(Uj) ≤ µ(V ) = 0 for all j.

Hence Uj ∈ C, so
⋃

i Ci ⊃ Uj for all j and therefore
⋃

i Ci ⊃ V . This gives the largest subset we

need.

20



5 JANUARY 2022 Texas A&M

(c) Let X be an uncountable set, and let M be the σ-algebra of countable and co-countable sets

on X. Define µ : M → [0, 1] to be 0 on countable sets and 1 on co-countable sets; then certainly

µ(∅) = 0. What’s more, for disjoint sets (Ei)
∞
1 ⊂ M, at most one set Ei is co-countable as any

such set is uncountable (since X is). Hence µ(
⋃
Ei) is 1 if one such sets Ei is co-countable and 0

otherwise (since the countable union of countable sets is countable). This agrees with the sum of

the measures of these individual sets Ei, so µ is a measure.

Is there a largest µ-null set? If we suppose U ∈ M is the largest µ-null set, then U is countable by

definition of µ, and since X is uncountable there is some other nonempty countable subset V ⊂ U c,

so U ∪ V is also µ-null, giving us our contradiction.

Problem 6. Let (X,M, µ) be a finite measure space and suppose f ∈ Lp(µ) for some p ∈ (0,∞).

Show

lim
n→∞

∫
|f |1/n dµ = µ({x ∈ X : f(x) ̸= 0}).

Proof. See Problem 2 of January 2010, amongst others.

Problem 7. Suppose (xn)
∞
n=1 is a sequence in a Banach space X that converges weakly to x ∈ X.

Show that

lim inf
n→∞

∥xn∥ ≥ ∥x∥.

Proof. Let f be the norm-one linear functional guaranteed by Hahn-Banach such that f(x) = ∥x∥.
Then f(xn) → f(x) = ∥x∥ by definition of weak convergence. Note |f(xn)| ≤ ∥f∥∥xn∥ = ∥xn∥. So if

(xnk
) ⊂ (xn) such that limk∥xnk

∥ = y, then

y = lim
k
∥xnk

∥ ≥ lim
k

|f(xnk
)| = ∥x∥,

so any subsequential limit of (∥xn∥) is greater than or equal to ∥x∥, completing the proof.

Problem 8. Let 1 ≤ p ≤ ∞ and let f ∈ Lp(R). Show that∫
R

|f(t)|
1 + t2

dt <∞.

Proof. By Hölder inequality, it suffices to show

∥ 1

1 + t2
∥q <∞

where q is the conjugate exponent to p. Since { 1
1+t2 : t ∈ R} ⊂ [0, 1], ( 1

1+t2 )
q ≤ ( 1

1+t2 ) for q ∈ [1,∞),

so it further suffices to show ∫
R

1

1 + t2
dt <∞

(for the case where q = ∞, ∥ 1
1+t2 ∥∞ = 1 < ∞ since 1 + t2 ≥ 1). But this integral evaluates to

arctan(t)|∞−∞ = π.
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Problem 9. Show that for every positive integer n, there is a regular, Borel, signed measure µ on

[0, 1] such that for all real polynomials P of degree ≤ n,

P ′(1/2) =

∫
P (x) dµ(x),

where P ′ is the derivative of P .

Proof. See Problem 4 of January 2013, noting the slight alteration.

Problem 10. Let X be the vector space of all real polynomials in one variable. Prove or disprove

that there exists a norm on X making X into a Banach space.

Proof. See Problem 9 of January 2010.

6 August 2021

Problem 1. Let (X,Ω) be a measurable space and suppose that (fn)
∞
n=1 is a sequence of real-valued

measurable functions on X. Show that the set of all points x ∈ X for which (fn(x))
∞
n=1 converges is

a measurable set.

Proof. Compare this with Exercise 3 in Chapter 2 of Folland.

We will say that a function may “converge to ±∞”, although the result will similar even if we ex-

clude this possibility. We have that lim sup fn(x), lim inf fn(x) are measurable functions. Define

g(x) =

{
0 lim sup fn(x) = ∞ = lim inf fn(x) or lim sup fn(x) = −∞ = lim inf fn(x)

lim sup fn(x)− lim inf fn(x) otherwise
.

Note that

g−1({0}) =(lim sup fn − lim inf fn)
−1({0})

∪ ((lim sup fn)
−1({∞})) ∩ (lim inf fn)

−1({∞}))
∪ ((lim sup fn)

−1({−∞}) ∩ (lim inf fn)
−1({−∞})).

The first set in this union is measurable since the subtraction of measurable functions is a measur-

able functions, and the other sets are measurable since the intersection of measurable sets is mea-

surable. So g−1({0}) = {x : fn converges} is measurable since the union of measurable sets is mea-

surable.

Problem 2. Suppose that X is a linear subspace of L2021([0, 1]) that is closed as a subspace of

L1([0, 1]). Show that X is closed as a subspace of L2021([0, 1]) and that (X, ∥·∥2021) is isomorphic

(meaning “linearly homomorphic”) to a Hilbert space.

Proof. We have that X is a subspace of L2021([0, 1]) with the following property: if (fn) ⊂ X and

f ∈ L1 such that ∥fn − f∥1 → 0, then f ∈ X. Consider (fn) ⊂ X and let f ∈ L2021 ⊂ L1 (by
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a linear map) such that ∥fn − f∥2021 → 0. Since m([0, 1]) = 1 < ∞, then by Proposition 6.12 in

Folland ∥fn − f∥1 ≤ ∥fn − f∥2021, so ∥fn − f∥1 → 0 as well, so f ∈ X as desired. By a similar

argument we have that if (fn) is a sequence in X such that ∥fn − f∥2 → 0 for f ∈ L2 ⊂ L1, we get

f ∈ X as well. Hence X is closed as a subspace in L2, so it may be linearly embedded as a Banach

subspace of L2. By restricting the inner product of L2 to the space X, we find that X is isomorphic

to a Hilbert space.

Problem 3. Regard L∞(0, 1) = L1(0, 1)∗. Prove that if f ∈ L∞(0, 1), then there is a sequence

(pn)
∞
n=1 of polynomials such that (1(0,1)pn)

∞
n=1 converges weak* to f .

Proof. Choose f ∈ L∞. By Lusin’s theorem, there is a function ϕn ∈ C[0, 1] and a set E such that

m(E) < 1/n, f = ϕn on Ec, and ∥ϕn∥∞ ≤ ∥f∥∞. Let pn be a polynomial such that |ϕn − pn| < 1/n.

We note then that |(pn − f)(g)| ≤ (2(∥f∥∞) + 1)(|g|), which is an L1 function. So

lim
n

|
∫
(pn − f)(g)| ≤ lim

n
|
∫
E

(pn − f)g|+ lim
n

∫
Ec

|(pn − f)g| ≤
∫

lim
n

|(pn − f)g|1E + lim
n
∥g∥1

1

n
→ 0.

(The first term goes to zero as this integral is finite and the measure of E shrinks to zero.) The re-

sult follows.

Problem 4. Let a and b be real numbers satisfying a > b > 1. Evaluate

lim
n→∞

∫ ∞

0

n| cos(x)|
1 + naxb

dx.

Proof. Let y = nx; then note that dy = ndx. So∫ ∞

0

n| cos(x)|
1 + naxb

dx ≤
∫ ∞

0

n

1 + naxb
dx =

∫ ∞

0

1

1 + na−byb
dy.

There exists an n > 0 such that na−b > 1, in which case this function is bounded above by 1
1+yb .

This function is integrable (by comparison and p-test on [1,∞) and by a bound above by 1 on [0, 1].

So MCT applies (see the variant in Exercise 15 of Chapter 2 of Folland) and

lim
n→∞

∫ ∞

0

n| cos(x)|
1 + naxb

dx =

∫ ∞

0

lim
n→∞

| cos(x)|n
xbna + 1

dx =

∫ ∞

0

0 dx = 0.

Problem 5. (a) State the closed graph theorem.

(b) Let αn > 0 (for n ∈ N). Suppose that for any numbers γn ≥ 0 we have

∞∑
n=1

γ2n <∞ ⇒
∞∑

n=1

γn√
αn

<∞.

Show that we must have
∞∑

n=1

1

αn
<∞.
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Proof. (a) See Theorem 5.12 of Folland. If X and Y are Banach spaces and T : X → Y is a closed

linear map - i.e., if the graph of T is a closed subspace of X × Y - then T is bounded.

(b) Define Tk : ℓ2 → R by

Tk((γn)
∞
n=1) →

k∑
n=1

γn√
αn

.

This is clearly a linear map. It is also bounded by our assumption, which in fact tell us

sup
k

|Tk((γn)∞n=1)| =
∞∑

n=1

|γn|√
αn

<∞.

So by UBP

∞ > sup∥Tk∥
Riesz rep

= sup
k

|⟨·,
k∑

i=1

ei√
αk

⟩|

= sup
k
∥

k∑
i=1

ei√
αk

∥2 = sup(

k∑
i=1

1

αk
)1/2

= (

∞∑
k=1

1

αk
)1/2.

So
∑∞

k=1
1
αk

< ∞ and we are done. (For the first equality on the second line, look at the paragraph

above the Riesz representation theorem for Hilbert spaces in Section 5.5 of Folland.)

Problem 6. Prove that if X is a separable Banach space then there is an injective bounded linear

operator from X into ℓ2021.

Proof. Let (xn)
∞
n=1 ⊂ X be dense in X. By Hahn-Banach there exists x∗n ∈ X∗ such that ∥x∗n∥ = 1

and |x∗n(xn)| = ∥xn∥. Define

T (x) =

∞∑
k=1

x∗k(x)

2k
ek

for T : X → ℓ2021. We want to show this operator is well-defined; it suffices to show it is bounded.

Let x ∈ X; then

∥T (x)∥2021 = (

∞∑
k=1

|x∗k(x)|2021

22021k
)1/2021 ≤ ∥x∥(

∞∑
k=1

1

22021k
)1/2021 ≤ ∥x∥.

(We are using ∥x∗k∥ = 1.)

We now want to show T is injective. Let (ym)∞m=1 ⊂
⋃∞

n=1{xn} be such that ym → x where 0 =

T (x) ⇒ x∗k(x) for all k ∈ N.

We claim ∥ym∥ → 0. We note there is some km such that ym = xkm for all m. So

0 = |x∗km
(x)| ≥ ||x∗km

(x− ym)| − |x∗km
(ym)|

⇒ |x∗km
(ym)| = ∥ym∥ ≤ ∥x∗km

∥∥x− ym∥ = ∥x− ym∥ → 0.
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Thus, ∥x∥ ≤ ∥x− ym∥+ ∥ym∥ → 0. So ∥x∥ = 0 and we are done.

Problem 7. Prove that if C is a weakly compact subset of C[0, 1], then C is a norm compact sub-

set of L2(0, 1). You may use the theorem that if a subset of a Banach space is weakly compact then

it is weakly sequentially compact.

Proof. Take an arbitrary sequence (fn)
∞
n=1 in C. By our assumption of weakly compactness of C

there exists f ∈ C[0, 1] and a subsequence (fnk
) such that fnk

→ f in C[0, 1]. Let us replace fnk

with fn; we will show fn → f in L2[0, 1], completing the proof.

First we claim ∥fn∥∞ <∞. Define Tn ∈ C[0, 1]∗∗ by Tn(µ) =
∫
fn dµ. Note that ∀µ ∈ C[0, 1]∗,

|Tn(µ)| ≤ |
∫
fn − f dµ|+ |

∫
f dµ| ≤ N + ∥f∥u∥µ∥,

where N is some bound guaranteed by the fact that
∫
fn − f dµ → 0; this sequence is eventually

bounded, and we may exclude any elements of this sequence that are not. By UBP, supn∥Tn∥ < ∞.

So there is some M > 0 such that |Tn(δx)| = |
∫
fn dδx| = |fn(x)| ≤ M . So ∥fn∥∞ ≤ M , as we

claimed.

Thus, as |
∫
(fn − f) dδx| = |fn(x)− f(x)| → 0 for all x ∈ [0, 1], and

|fn − f |2 ≤ (∥fn∥∞ + ∥f∥∞)2 ≤ (M + ∥f∥∞)2 ∈ L1(0, 1),

by LDCT, limn→∞
∫
|fn − f |2 dm =

∫
limn→∞ |fn − f |2 dm = 0.

Problem 8. (a) Prove that every infinite-dimensional vector space contains a linearly independent

set whose linear span is the whole space.

(b) Prove that every infinite-dimensional Banach space has a discontinuous linear functional.

Proof. (a) Let C be the collection of linearly independent sets of our infinite-dimensional vector

space. Any singleton set (other than 0) is linearly independent, so C is non-empty. Partially order

C by inclusion and let (Cα) be a chain in C. Consider
⋃

α Cα and assume
∑n

i=1 αici for ci ∈
⋃

α Cα,

αi in our field. Then since (Cα) is a chain there is some C ′
α containing all of ci, so clearly all αi =

0. Hence by Zorn’s lemma C has a maximal element C. Assuming the linear span of C is not the

whole space, let v be an element in our vector space not in the linear span (note v ̸= 0). Then we

claim C + v is linearly independent; indeed, if not, then there is some nontrivial solution (αi) to∑n
i=1 αiαici + α0v for some (ci) ⊂ C, n ∈ N. But α0 ̸= 0 since C is linearly independent, so we can

write v as the linear span of the other elements of ci - a contradiction. This proves the statement.

(b) Let (xn)
∞
n=1 be an infinite linearly independent set. WLOG we may assume ∥xn∥ = 1 for all n.

Define a linear function f on the subspace generated by these xn such that f(xn) = n. (We may

extend linearly while keeping the function well-defined by definition of linear independence.) Then

∥f∥ ≥ n for all n, so f is unbounded and hence discontinuous.

Problem 9. Prove or disprove: There is a continuous function f from the reals to the reals such

that for all rational numbers x, f(x) is irrational, and for all irrational numbers x, f(x) is rational.
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Proof. The following disproves the statement above. Assuming the existence of such a function f :

for q ∈ Q, the sets f−1({q}) are closed since f is continuous. Now by definition of f
⋃

q∈Q f
−1({q})

is the set of irrational numbers. Hence R =
⋃

q∈Q f
−1({q})∪

⋃
q∈Q{q}, a countable union of nowhere

dense sets. Baire Category Theorem gives the needed contradiction.

Problem 10. Let F be a continuous, real-valued function on [0, 1]× [0, 1]× [−1, 1] and for f in the

unit ball of CR[0, 1], define Gf : [0, 1] → R by

Gf (s) =

∫ 1

0

F (s, t, f(t)) dt.

Show that {Gf : f ∈ CR[0, 1], ∥f∥ ≤ 1} is a pre-compact subset of CR[0, 1].

Proof. It’s time to use Arzela-Ascoli I. Note that F is continuous on a compact set, so it is uni-

formly continuous. Fix ε > 0 and choose δ > 0 such that d((s1, t1, u1), (s2, t2, u2)) < δ, then

|F (s1, t1, u1)− F (s2, t2, u2)| < ε. Then for |s1 − s2| < δ,

|Gf (s1)−Gf (s2)| = |
∫ 1

0

[F (s1, t, f(t))− F (s2, t, f(t))] dt| ≤
∫ 1

0

|F (s1, t, f(t))− F (s2, t, f(t))| dt < ε.

(In the first equality, by considering F1(t) := F (s1, t, f(t)) and F2(t) := F (s2, t, f(t)) we are free

to write
∫
F1 dt −

∫
F2 dt as

∫
F1 − F2 dt.) This is true irrespective of our choice of f , so {Gf : f ∈

CR[0, 1], ∥f∥ ≤ 1} is equicontinuous. Also |F | ≤M for some M > 0, so |Gf (s)| ≤ supF (s, t, f(t))m([0, 1]) ≤
M as well, giving a pointwise bound. So Arzela-Ascoli applies and we are done.

7 January 2021

Problem 1. Let (X,µ) be a finite measure space and f : X → [0,∞) an integrable function. For

each n set gn(x) = f(x)1/n for all x ∈ X. Show that the sequence (gn) converges in L1(µ) and

determine the limit.

Proof. See Problem 2 of January 2010, amongst others.

Problem 2. Let µ be Lebesgue measure on [0, 1] and let A be a closed subset of [0, 1]. Prove that

µ(A) = 0 iff there is a sequence (pn) of polynomials such that

(i) pn(x) ≥ 0 for all n and x ∈ [0, 1],

(ii)
∫ 1

0
pn dµ→ 0 as n→ ∞, and

(iii) pn(x) → ∞ for all x ∈ A.

Proof. (⇐) Say we have polynomials (pn) ≥ 0 such that
∫
pn → 0 and pn(x) → ∞. Then pn → 0 in

L1, so there is some subsequence converging to 0 a.e. But pn(x) → ∞ for all x, so µ(A) = 0.

(⇒) Assume µ(A) = 0 and A is closed. We will first show that (i), (ii), and (iii) hold where pn is

replaced with a continuous function fn. Let Un ⊃ A be an open set such that µ(Un\A) < 1
n2 . Then
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Urysohn guarantees a continuous fn : [0, 1] → [0, n] such that fn = n on A and fn = 0 on U c
n. Then∫

fn =

∫
A

fn +

∫
Un\A

fn = nµ(Un\A) ≤
1

n
→ 0.

This gives (ii), and (i) and (iii) are immediate by construction. For each n we may define a polyno-

mial pn such that ∥pn − (fn + 1
n )∥∞ < 1

n ; then∫
pn ≤

∫
|pn − (fn +

1

n
)|+

∫
(fn +

1

n
) ≤ 1

n
µ[0, 1] +

1

n
+

1

n
µ[0, 1] → 0.

Since pn ≥ fn ≥ n for all n, we are done.

Problem 3. (a) Let X be a normed space and (xn) a sequence in X. For each n set yn = (x1 +

· · ·+ xn)/n. Show that if (xn) converges then so does (yn).

(b) Consider [0, 1] with Lebesgue measure µ. Show that there exists a sequence (fn) of nonnegative

integrable functions on [0, 1] such that fn converges in measure to zero but the averages gn =

(f1 + · · ·+ fn)/n do not.

Proof. (a) Assume xn → x in norm and define yn := (x1 + · · ·+ xn)/n. Then

∥yn − x∥ = ∥x1 − x

n
+ · · ·+ xn − x

n
∥ ≤

n∑
i=1

∥xi − x∥
n

=

N−1∑
i=1

∥xi − x∥
n

+

n∑
i=N

∥xi − x∥
n

where n > N and N is chosen such that ∥xN − x∥ < ε
2 for all n ≥ N . We can also choose N1 ≥ N

such that
N−1∑
i=1

∥xi − x∥
N1

<
ε

2
.

Then continuing from above, for n ≥ N1,

∥yn − x∥ ≤ ε

2
+
ε

2
= ε.

(b) It’s time for (an alteration of) your favorite sequence:

f2n+i = 2n1[ i−1
2n , i

2n ] for n ≥ 0, 0 ≤ i < 2n.

We have {x : |f2n+i| > ε} = 1
2n , so this sequence goes to 0 in measure. However, we note that

2n−1∑
i=1

fi =

k=n−1∑
k=0

2k
2k∑
j=1

1[ j−1

2k
, j

2k
] =

k=n−1∑
k=0

2k = 2n − 1.

So there is a subsequence of f2n+i - namely (f2n−1) - where the averages are all equivalently the

unit function, which does not converge in measure to zero.

Problem 4. Prove or disprove: ℓ1 and c0 are isomorphic. (Recall that the Banach space c0 is the

space of sequences N → C which conerge to zero, with pointwise vector space operations and supre-

mum norm, and that an isomorphism between Banach spaces is an invertible bounded linear map

with bounded inverse.)
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Proof. If ℓ1 is isomorphic to c0, then

ℓ∞ ∼= ℓ∗1
∼= c∗0

∼= ℓ1.

(1) ℓ∞ ∼= ℓ∗1: dual of Lp results (section 6.2)

(2) ℓ∗1
∼= c∗0: if T : ℓ1 ∼= c0, we claim T † : ℓ∗1

∼= c∗0. We reference Exercise 22 of Chapter 5 of Folland

to see ∥T∥ = ∥T †∥ and ∥T−1∥ = ∥(T−1)†∥, then calculate

(T−1)†T †(g) = (T−1)†(g ◦ T ) = g,

and similarly for T †(T−1)†.

(3) By the Riesz representation theorem on C0(X), c∗0 is the set of complex Radon measures on N,
which have finite total variation (section 7.3).

But we claim ℓ∞ ̸∼= ℓ1 because ℓ∞ is not separable and ℓ1 is. Indeed, consider ℓ∞. For an arbitrary

subset K ⊂ N,

fK(x) =

{
1 x ∈ K

0 x /∈ K

is an uncountable family of elements each of distance 1 from each other, so there are uncountably

many disjoint nonempty open balls in ℓ∞. However, in the space ℓ1, the rational span of the se-

quence

en = (0, · · · , 0, 1︸︷︷︸
nth space

, 0, . . . )

is countable and dense in ℓ1.

Problem 5. Let (X, d) be a compact metric space and regard C(X)∗ as the space of finite Borel

signed measures on X. Let (µn) be a weak* convergent sequence of Borel probability measures on X.

Recall that the support of a measure on X is the complement of the union of all open sets with zero

measure. Show that if the diameter of the support of µn tends to zero as n → ∞ then the limit of

(µn) is a point mass. Also, show that the converse is false.

Proof. (1) We first note that µ(X) = 1 since

µ(X) =

∫
1 dµ = lim

n

∫
1 dµn = lim

n
µn(X) = 1.

(2) If x ∈ supp(µ), then dist(x, supp(µn)) → 0. Suppose not. Define An = supp(µn), A = supp(µ).

Then there is some ε > 0 such that for some subsequence (Ank
), dist(x,Ank

) ≥ ε for all k. We

will claim µn does not converge pointwise to µ given this assumption, which we will achieve by

Urysohn’s lemma.

Take B = B(x, ε/2) and B1 = B(X, ε/4). Note that B1 ⊂ B ⊂ Ac
nk

for all k. Then there is a

function f ∈ C(X, [0, 1]) which is 1 on B1 and 0 on Bc ⊃ Ank
. We have∫

f ≥
∫
B1

f dµ = µ(B1) > 0, but

∫
dµnk

=

∫
Ank

dµnk
= 0.
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(3) But there is only one such x that can satisfy dist(x, supp(µn)) → 0 since the diameter of supp(µn)

goes to 0. Indeed, any two x1 ̸= x2 are positive distance ε, and the diameter of supp(µn) is eventu-

ally less than ε/3, making this impossible.

(1)-(3) guarantee that µ is a point mass.

For the converse: define µn = (1− 1
n )δ0 +

1
nδ1. Then since f ∈ C[0, 1] is bounded,∫

f dµn = (1− 1

n
)f(0) +

1

n
f(1) → f(0) =

∫
f dδ0.

But the diameter of supp(µn) = {0, 1} is 1 for all n.

Problem 6. A sequence (xn) in a normed space X is said to be weakly Cauchy provided that for

each x∗ ∈ X∗ the sequence (x∗(xn)) is a convergent sequence of scalars.

(a) Prove that a weakly Cauchy sequence in a normed space is norm bounded.

(b) Prove that a weakly Cauchy sequence in a reflexive Banach space is weakly convergent.

(a) This is a Uniform Boundedness problem. We have x̂n(x
∗) = x∗(xn) is convergent for all x

∗ ∈ X.

In particular, supn |x̂n(x∗)| < ∞ for all x∗ ∈ X∗, and since X∗ is Banach supn∥x̂n∥ < ∞. The map

·̂ : X → X∗∗ is an isometry, so we are done.

(b) Define x∗∗ ∈ X∗∗ by x∗∗(x∗) = limn x
∗(xn) (for x

∗ ∈ X∗). We have x∗∗ is bounded since

|x∗∗(x∗)| ≤ lim sup
n

∥x∗∥∥xn∥ ≤M∥x∗∥,

where M = sup∥xn∥ < ∞ by (a). Since X is reflexive, there is some x ∈ X such that x̂ = x∗∗. Then

xn → x weakly since

x∗(xn) → x∗∗(x∗) = x̂(x∗) = x∗(x).

Problem 7. Let K be a nonempty closed convex subset of L2(0, 1). Prove or disprove that there

must exist an x in K such that ∥x∥ = infy∈K∥y∥.

Proof. Note that L2(0, 1) can be equipped with an inner product with which it becomes a Hilbert

space. This turns out to be true, either by any solution to Exercise 59 in Folland or by Problem 5

on the January 2011 qualifying exam (which solves a more general problem).

Problem 8. Prove that if X is a separable Banach space then there is a bounded linear operator

T : ℓ2 → X such that Tℓ2 is dense in X.

Proof. Compare this to Exercise 36(b) in Chapter 5 of Folland; we are now tasked with construct-

ing a similar map from L2 and showing that such a map is dense in X rather than surjective. How-

ever, ℓ1 ⊂ ℓ2, so we need to be careful on how we form our function.

We define

T (f) =

∞∑
n=1

f(n)

2n
xn.
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We show this series converges:

∞∑
n=1

∥f(n)
2n

xn∥ ≤
∞∑

n=1

|f(n)|
2n

≤ ∥f∥2
∞∑

n=1

1

2n
= ∥f∥2 <∞.

(Note |f(n)|2 ≤ ∥f∥22.) T is clearly linear and bounded. To show Tℓ2 is dense in X, it suffices to

show it contains (xn). Define

en(k) =

{
1 n = k

0 n ̸= k
.

Then T (2nen) = xn.

Problem 9. Let (X,µ) be a finite measure space and let (An) be a sequence of measurable subset of

X whose indicator functions χAn
converge in L1(µ). Show that the limit is a.e. equal to the indica-

tor function of some measurable set.

Proof. Suppose χAn → f in L1 for some f ∈ L1. Then there is some subsequence χAnk
→ f a.e.

This (pointwise) limit must be 1 or 0, so f is an indicator function outside of a null set N . Note

that E := N c ∩ f−1({1}) is measurable since Lebesgue measure is complete, and f = χE a.e.

Problem 10. Consider [0, 1] with Lebesgue measure µ. For each n define

fn =

2n−1∑
k=0

(−1)kχAk

where Ak = [k/2n, (k + 1)/2n]. Show that fn → 0 weakly in L1[0, 1].

Slick proof with orthonormality. Compare this to the Rademacher functions in R.

First note that that L2([0, 1]) ⊃ L∞([0, 1]), so it suffices to show that fn → 0 in L2[0, 1].

However, the functions fn are orthonormal functions in L2! Indeed, if n ̸= m, fnfm is odd about

x = 1
2 , and f

2
n is the function 1. So we now only need to show that

⟨g, fn⟩
n→∞→ 0,

which is true because by Bessel’s Inequality
∑∞

n=0⟨g, fn⟩ = ∥g∥2, meaning the tail-end of this series

goes to 0.

More direct. The simple functions are dense in L∞[0, 1] (see Theorem 2.10), so it suffices to show∫
E

fn → 0 for measurable sets E ⊂ [0, 1].

Since the fn are bounded and we can find an open set U ⊃ E such that µ(U\E) < ε, it suffices to

show ∫ b

a

fn → 0∀a < b
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(we need boundedness of [0, 1] as well). Let (aj), (bj) be sequences of dyadic rationals such that

aj ↘ a, bj ↗ b, and each of aj , bj have denominator 2j . Choose i such that aj − a + b − bj < ε/2.

Then since

|
∫ b

a

fn| ≤
∫ aj

a

|fn|+
∫ b

bj

|fn|+
∫ bj

aj

|fn| < |
∫ bj

aj

fn|+ ε,

it suffices to show |
∫ bj
aj
fn| → 0 (finally!).

If n ≥ j, then [aj , bj ] = Ak ∪ Ak+1 ∪ · · · ∪ Ak+s for some k, s, where the value of f on these A-sets

alternates between ±1. If s − k + 1 is even, the above integral is 0; otherwise it is in {−1/n, 1/n}.
Either way,

|
∫ bj

aj

fn| ≤
1

n
→ 0.

8 August 2020

Problem 1. Let f ∈ L1(R). Stating any theorems that you use, compute

lim
n→∞

∫
R
|f(x)|1/n dx.

Proof. See Problem 2 of January 2010, amongst others.

Problem 2. Let f(x) be a real-valued continuous function on [0, 1] satisfying f(0) = 0. Given ε >

0, prove that there is a polynomial p(x) such that

∥f(x)− x1/2p(x)∥∞ < ε.

Proof. Our favorite theorem Stone-Weierstrass doesn’t quite come into play until we find the right

algebra to use it on. We decide to use the algebra:

A = {g ∈ C[0, 1] : g(x) = x1/2h(x)∀x for some h ∈ C[0, 1]}.

Clearly this is a vector space, and (x1/2h1(x))(x
1/2h2(x)) = x1/2(h1(x)h2(X)x1/2). Also g(x) :=

x1/2x1/2 = x ̸= y = g(y) for x ̸= y. We note g(0) = 0 for all g and apply Stone-Weierstrass to get

Ā = {g ∈ C[0, 1] : g(0) = 0}.

Now we can find a function g = x1/2h ∈ A such that ∥f − g∥∞ < ε
2 and a polynomial p ∈ C[0, 1]

such that ∥p− h∥∞ < ε
2 . So
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sup |f(x)− x1/2p(x)| ≤ ∥f − g∥∞ + sup
x∈[0,1]

|x1/2h(x)− x1/2p(x)|

≤ ∥f − g∥∞ + sup
x∈[0,1]

|x1/2| · sup
x∈[0,1]

|h(x)− p(x)|

= ∥f − g∥∞ + 1∥h− p∥∞ < ε.

Problem 3. Let f : R → R be a Lebesgue integrable function such that∫ b

a

f(x) dx = 0 for every a < b.

Show that f(x) = 0 for almost every x ∈ R.

Proof. It doesn’t seem non-trivial to invoke Lebesgue Differential Theorem here: i.e., since f ∈ L1 ⊂
L1
loc we have

0 = lim
n→∞

n

2

∫ x+1/n

x−1/n

f(y) dy = f(x)

for a.e. x. However, we might just want to feel better that we maybe didn’t think of this and just

say we thought this other solution was “better suited” for a qual problem :)

Alternative solution: We want to show µ({x : f(x) ̸= 0}) = 0. Let us assume f ≥ 0, set E :=

{x : f(x) > 0} and further assume µ(E) > 0. We can certainly find a compact set F ⊂ [−m,m]

contained in E such that µ(F ) > 0. We note U := F c ∩ (−m,m) is open and hence can be written

as a union of disjoint intervals
⋃

n(an, bn) Then

0 =

∫ m

−m

f(x) dx =

∫
F

f +

∫
U

f =

∫
F

f +

∞∑
n=1

∫ bn

an

f =

∫
F

f.

This contradicts our choice of F . For general f we may apply this on f+ and f−, as both are also

L1.

Problem 4. Let f be Lebesgue integrable on (0, 1). For 0 < x < 1 define

g(x) =

∫ 1

x

t−1f(t) dt.

Prove that g is Lebesgue integrable on (0, 1) and that∫ 1

0

g(x) dx =

∫ 1

0

f(x) dx.

(Hint: first prove the claim under the assumption that f(x) ≥ 0.)
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Proof. If f ≥ 0, one can use Tonelli below:∫ 1

0

g(x) dx =

∫ 1

0

(∫ 1

x

t−1f(t) dt

)
dx

=

∫ 1

0

(∫ t

0

t−1f(t) dx

)
dt

= f(t) dt <∞.

Now that we know g is L1 for any integrable f , Fubini also allows us to make the above calculation

for the general case.

Problem 5. Let X be an infinite-dimensional Banach space. Show that the weak closure of the

sphere SX = {x ∈ X : ∥x∥ = 1} is the unit ball BX = {x ∈ X : ∥x∥ = 1}.

Proof. This is very similar to Exercise 63 in Chapter 5 of Folland. We will need to make a few ad-

justments to the standard proof for this exercise.

First, we know from Exercise 48 of Chapter 5 of Folland (or Mazur’s theorem, if you are familiar)

that the norm-closed ball BX is also weakly closed, so S w
X ⊂ BX . (You may want to prove it.)

To show BX ⊂ S w
X , fix x ∈ BX and let V be a weak neighborhood of x. Then

V ⊃ (x∗1)
−1(V1) ∩ · · · ∩ (x∗n)

−1(Vn)

for some x∗i ∈ X∗, Vi ⊂ k open s.t. x∗i (x) ∈ Vi for all i ∈ [n].

Since X is infinite-dimensional, there is some y ̸= 0 such that y ∈ ker(x∗i ) because
⋂n

i=1 ker(x
∗
i ) has

finite codimension. Then for all t ∈ k, x+ ty ∈ V since x∗i (x+ ty) = x∗i (x) ∈ Vi.

The mapping t 7→ ∥x+ ty∥ is continuous, and when ∥x+ ty∥ = ∥x∥ ≤ 1. As t → ∞, ∥x+ ty∥ → ∞,

so by intermediate value theorem there is some t0 ∈ k such that ∥x+ t0y∥ = 1. Therefore V ∩ SX ⊃
{x+ t0y} ≠ ∅. Hence x ∈ S w

X , yielding the desired equality.

Problem 6. Let (Ak) be a sequence of measurable subsets of a measure space (X,M, µ) and let Bm

be the set of all x ∈ X which are contained in at least m of the sets Ak, k ∈ N.

Prove that Bm is measurable and that

µ(Bm) ≤ 1

m

∞∑
k=1

µ(Ak).

Proof. See Problem 3 of August 2019.

Problem 7. (a) State Tietze’s Extension Theorem.

(b) Let n ∈ N and let (xj)
n
j=1 ⊂ [0, 1] and (rj)

n
j=1 ⊂ R be given. Show that there is a continuous

function f : [0, 1] → R with the property that f(xj) = rj, j ∈ [n], and∫ 1

0

f(x) dx = 0.
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Proof. (a) See Theorem 4.16 in Folland. If X is a normal topological space, A ⊂ X is closed, and

f : A → [a, b] is continuous, there exists a continuous extension f̃ : X → [a, b]. (We note that there

is an LCH version of this result as well.)

(b) Tietze is not necessary here; although there would exist a continuous function such that f(xj) =

rj by Tietze, more work would need to follow to get such a function where
∫
f = 0, so we take a

different approach. Choose ε > 0 such that [xi − 3ε, xi +3ε]∩ [xj − 3ε, xj +3ε] = ∅ for all i ̸= j. We

can further choose ε such that for all xi ̸= 0, 1, [xi − 3ε, xi + ε] ⊂ [0, 1].

Let f ≡ 0 on (
⋃

i[xi − 3ε, xi + 3ε])c. If xi ̸= 0, 1, define

f(x)|[xi−3ε,xi+3ε] =


0 xi − 3ε ≤ x ≤ xi − ε

− ri
ε (xi − ε) + ri

ε (x) xi − ε ≤ x ≤ xi
ri
ε (xi + ε)− ri

ε (x) xi ≤ x ≤ xi + 2ε
ri
ε (xi + 3ε) + ri

ε (x) xi + 2ε ≤ x ≤ xi + 3ε

.

If x1 = 0, define

f(x)|[0,3ε] =


r1 − r1

ε x 0 ≤ x ≤ ε
r1
2 − r1

2εx ε ≤ x ≤ 2ε

− 3r1
2 + r1

2εx 2ε ≤ x3ε

.

Similarly if xn = 1. (This is a zero function with 2n spikes such that the integral of each spike is the

negative of its adjacent spike.) Then f is continuous, and by construction
∫ 1

0
f = 0.

Problem 8. (a) Show that C[0, 1] can be naturally viewed as a subspace of L2[0, 1] (on [0, 1] we

consider the Lebesgeu [it’s a typo but I’m not changing it] measure) by proving that each equiva-

lence class in L2[0, 1] contains at most one function in C[0, 1] (fixed an actual exam typo).

(b) Let T : L2(µ) → L2(µ) be a bounded linear map satisfying T (C([0, 1])) ⊂ C([0, 1]). Show that the

map f 7→ T (f) from C[0, 1] to itself is bounded with respect to the supremum norm.

Proof. (a) We only need to show that, whenever f, g ∈ C[0, 1], (f = g a.e.)⇒(f = g). We know from

theorems in Folland that
∫
|f − g| = 0, meaning that {x : |f − g| > 0} has zero measure. But this is

an open set since |f − g| is continuous, so it is empty.

(b) We will use Closed Graph Theorem and show the graph of T |C[0,1] is closed in C[0, 1] × C[0, 1].

Suppose (fn, Tfn) is a sequence in the graph of this function such that

(fn, T fn) → (f, g) in C[0, 1]× C[0, 1].

We want to show g = Tf . Since T is bounded in the L2-norm, we can calculate

∥g − Tf∥2 ≤ ∥g − Tfn∥2 + ∥Tfn − Tf∥2.

This first term goes to 0 since fn → g in supremum norm and hence similarly in L2-norm. The

second term also goes to zero since T is continuous on L2. So g = Tf a.e. and by (a) Tf = g. So

T |C[0,1] is C[0, 1]-continuous.

34



9 JANUARY 2020 Texas A&M

Problem 9. (a) Let C[0, 1] be the Banach space of real-valued continuous functions on [0, 1]. Find

the extreme points of the unit ball of C[0, 1].

(b) Show that C[0, 1] is not isometrically isomorphic to a dual space of a Banach space.

Proof. See Problem 10 of August 2010.

Problem 10. Let µ be a Borel measure on [0, 1] with µ([0, 1]) = 1.

(a) Show that if µ is atomless, then for any 0 < r < 1 there is a measurable A ⊂ [0, 1] with µ(A) =

r.

Recall that A ⊂ [0, 1] is an atom for µ if µ(A) > 0, and for all measurable B ⊂ A, either

µ(B) = µ(A) or µ(B) = 0.

(b) Show that µ is atomless iff for each n ∈ N there is a partition of [0, 1] into n sets A1, . . . , An

with µ(Aj) =
1
n for j ∈ [n].

Proof. (a) Define a function f : [0, 1] → [0, 1] using the rule f(x) = µ([0, x]). The function f is well-

defined since µ is Borel, f is increasing, f(0) = 0, and f(1) = 1. If we show that f is continuous, we

are done by Intermediate Value Theorem.

Since f is increasing, the only discontinuity f can have is a jump discontinuity. Say there exists c ∈
(0, 1] such that limx→c− f(x) ̸= f(c). Then for sufficiently large n, f(c) − f(c − 1

n ) = µ((c − 1
n , c])

is well-defined, and limn→∞ f(c) − f(c − 1
n ) > 0. Hence µ({c}) = limn→∞ µ((c − 1

n , c]) > 0.

But then {c} is an atom, contradicting the fact that µ is atomless. A similar argument shows that

limx→c+ f(x) = f(c) for all c ∈ [0, 1), showing that f is continuous.

(b) (⇒) We can find a set A1 ⊂ [0, 1] of µ(A1) = 1
n . For k < n − 1, having found Ak we can find

Ak+1 ⊂ [0, 1]\(
⋃

iAi)
c such that µ(Ak+1) =

1
n . Then setting An = (

⋃
iAi)

c gives us our result.

(⇐) Let µ(A) > 0 and pick n such that 1
n < µ(A). Then µ(A ∩ Aj) ̸= 0 for some j. Since µ(A ∩

Aj) ≤ 1
n < µ(A), we are done.

9 January 2020

Problem 1. Show that

lim
n→∞

∫ ∞

0

4t3 + 12

12t6 + 3nt+ 2
dt = 0.

Proof. First, it is clear that

fn(t) :=
4t3 + 12

12t6 + 3nt+ 2
→ 0

pointwise. We also have

fn(t) ≤
4t3 + 12

12t6
∈ L1(1,∞)

fn(t) ≤
4t3 + 12

12t6 + 2
∈ L1(0, 1).
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(The first equation is dominated by 4
3t3 on (1,∞); the other by 8 on (0, 1).)

In light of this we define

g(t) =

{
4t3+12
12t6+2 t ∈ (0, 1]
4t3+12
12t6 t ∈ (1,∞)

.

Then |fn| ≤ g ∈ L1(0,∞). DCT completes the proof.

Problem 2. Show for all f ∈ L1(R) that

lim
δ→1

∫
|f(δx)− f(x)| dx = 0.

Proof. We claim ∥f(δx)∥1 ≤ 1
δ ∥f∥1. Note this is true for indicator functions on sets [a, b] by u-

substitution ∫
1[a,b](δx) dx =

1

δ

∫
1[a,b](x) dx =

1

δ
m([a, b]),

so it is true for simple functions and hence for all L1 functions. In particular, this means that |f(δx)−
f(x)| ≤ |f(δx)|+ |f(x)| ∈ L1(R). If f ∈ L1 is continuous, then DCT implies

lim
δ→1

∫
|f(δx)− f(x)| dx =

∫
|f(lim

δ→1
δx)− f(x)| dx = 0,

and since the continuous functions are dense in L1 we are done.

(One can also do this by assuming f is of compact support to get a similar L1-bound for DCT.)

Problem 3. For an integrable function f ∈ L1(R), and α ≥ 0 put

Eα := {x ∈ R : |f(x)| ≥ α}.

Show that the map α 7→ m(Eα) is measurable and that∫ ∞

−∞
|f(x)| dx =

∫ ∞

0

m(Eα) dα.

Proof. Fix f ∈ L1(R). Define g : [0,∞) → R by

g(α) = m(Eα).

We want to show that g is measurable; i.e., we want

g−1(−∞, b) : {α ∈ [0,∞) : g(α) < b}

to be measurable for all b ∈ R. First: E0 = R, and if α < α′, then Eα′ ⊂ Eα. Hence if c ∈
g−1(−∞, b), then if c′ > c we have

g(c′) ≤ g(c) < b.

Therefore g−1(−∞, b) is an interval, so it is Lebesgue measurable. Hence g is measurable.
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To finish the problem, note that∫ ∞

0

m(Ea) da =

∫ ∞

0

∫
R
1{x:|f(x)|≥a} dx da

Tonelli
=

∫ ∞

−∞

∫ ∞

0

1{x:|f(x)|≥a} da dx =

∫ ∞

−∞
|f(x)| dx.

Problem 4. Let 1 < p, q < ∞ with 1
p + 1

q = 1. Using the inequality aλb1−λ ≤ λa + (1 − λ)b, for

0 < λ < 1 and 0 ≤ a, b, prove the Hölder inequality.

Proof. This proof is given as the proof of Theorem 6.2 in Folland. We restate the Hölder inequality

(the author does not anticipate any equality stipulations require stating or proof): if f, g are mea-

surable functions on X,

∥fg∥1 ≤ ∥f∥p∥g∥q.

If ∥f∥p or ∥g∥q = 0 - or if f /∈ Lp or g /∈ Lq - this is obvious. If ∥f∥p = 1 = ∥g∥q, then

∥fg∥1 =

∫
X

|f(x)||g(x)| dµ =

∫
X

(|f(x)|p)1/p(|g(x)|q)1/q dµ

aλb1−λ

≤
∫
X

|f(x)|p

p
dµ+

∫
|g(x)|q

q
dµ

=
1

p
∥f∥pp +

1

q
∥g∥qq = 1.

In general,

∥fg∥1 = ∥f∥p∥g∥q∥
f

∥f∥1
g

∥g∥q
∥ ≤ ∥f∥p∥g∥q.

Problem 5. Show that for ε > 0 there is a closed subset E ⊂ [0, 1] with empty interior, of Lebesgue

measure at least 1− ε.

Proof. The generalized Cantor set is given as an answer for this problem in Folland’s text, and it is

up to us to show such a set has the intended measure (see Exercise 32 in Chapter 1 of Folland).

We reiterate: take a sequence of real numbers (αi) such that
∑
αi < ∞. The construction of this

set comes from removing the (open) middle αith of each interval present at the i − 1th step of our

construction (instead of the middle third) to get a set Ei. The intersection
⋂∞

i=1Ei will have mea-

sure
∏

j(1 − αj), since removing αith of the set leaves us with (1 − αi)th of it (apply an induction

argument). Clearly the remaining set will be closed, as it is an intersection of closed sets. Since the

length of the longest (and every) interval is at least halved at each step, it will also have empty in-

terior. We will show there exists a sequence (αi) such that
∏

i(1 − αi) = 1 − α
1−2α for α ∈ (0, 13 ),

completing the proof.

Define αi := αi. Then an easy induction argument shows that

m(En) = 1−
n∑

k=1

2k−1αk = 1− 1

2

n∑
k=1

(2α)k

n→∞→ 1− 1

2
(

2α

1− 2α
) = 1− α

1− 2α
.
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Problem 6. Let X be a Banach space and Y a non-trivial closed subspace of X.

(a) Show that for all y∗ ∈ Y ∗ (the dual of Y ) the set

{x∗ ∈ X∗ : ∥x∗∥ = ∥y∗∥ and x∗|Y = y∗}

is weak*-compact.

(b) Show that every extreme point of the closed unit ball of Y ∗ extends to an extreme point of the

unit ball of X∗.

Proof. (a) Define

Ey∗ := {x∗ ∈ X∗ : ∥x∗∥ = ∥y∗∥ and x∗|Y = y∗}.

Note Ey∗ ⊂ ∥y∗∥BX∗ , so by Alaoglu it suffices to show that Ey∗ is weak*-closed.

To this end, suppose that (x∗α) is a net in Ey∗ converging weak* to x∗. If y ∈ Y , then noting that

weak*-convergence is pointwise convergence:

x∗(y) = limx∗α(y) = lim
α
y∗(y) = y∗(y).

Hence x∗|Y = y∗. Y is non trivial, so ∥x∗∥ ≥ ∥y∗∥. But since (x∗α) ⊂ Ey∗ ⊂ ∥y∗∥BX∗ , which is

weak*-closed, we have ∥x∗α∥ ≤ ∥y∗∥. Since the norm is calculated as the supremum of point-norms,

we get ∥x∗∥ ≤ ∥y∗∥, so Ey∗ is weak*-closed and hence weak*-compact.

(b) Suppose y∗ is an extreme point of BY ∗ . Then ∥y∗∥ = 1 and Ey∗ is weak*-compact. By Hahn-

Banach Ey∗ ̸= ∅. Ey∗ is convex because if x∗1, x
∗
2 ∈ Ey∗ and λ ∈ [0, 1], then

(λx∗1 + (1− λ)x∗2)|Y = λx∗1|Y + (1− λ)x∗2|Y = λy∗ + (1− λ)y∗ = y∗.

Since Y is nontrivial, ∥λx∗1 + (1− λ)x∗2∥ ≥ ∥y∗∥, and also

∥λx∗1 + (1− λ)x∗2∥ ≤ λ∥x∗1∥+ (1− λ)∥x∗2∥ = ∥y∗∥.

So λx∗1 + (1− λ)x∗2 ∈ Ey∗ . We have gathered that Ey∗ is convex, nonempty, and weak*-compact. So

by Krein-Milman, E∗
y is the weak*-closure of the convex hull of its extreme points.

Now for any extreme point of y∗ ∈ By∗ , we know Ey∗ is non-empty, so take an extreme point x∗ on

Ey∗ . We claim x∗ is an extreme point of BX∗ , and since x∗ extends y∗ and maintains its norm we

are done. Let x∗ = λx∗1 = (1 − λ)x∗2 for λ ∈ (0, 1) and x∗1, x
∗
2 ∈ BX∗ . Then x∗1|Y , x∗2|Y ∈ BY ∗ and

y∗ = x∗|Y = λx∗1|Y + (1− λ)x∗2|Y , so x∗1|Y = x∗2|Y = y∗. Clearly ∥x∗1∥ = ∥x∗2∥ = 1 = ∥y∗∥, so in fact

x∗1, x
∗
2 ∈ Ey∗ . But x∗ is an extreme point of Ey∗ , so x∗ is an extreme point of BX∗ .

Problem 7. (I refuse the notation from the exam and have substituted my own.) Assume that

(X, ∥·∥1) is a normed linear space and that Y is a subspace of X. Assume that ∥·∥2 is a norm on

Y which is equivalent to ∥·∥1. Prove that ∥·∥2 can be extended to an equivalent norm on all of X.

Proof. The following proof uses some results from convex analysis. One may review Section 4.1 of

Conway’s A Course in Functional Analysis as well as Chapter 1 of Rudin’s Functional Analysis.
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Denote by B = B(X,∥·∥1) and B
′ = B(Y,∥·∥2). There exist 0 < c < c′ such that

c∥y∥1 ≤ ∥y∥2 ≤ c′∥y∥1.

Thus,

cB ∩ Y ⊂ B′ ⊂ c′B ∩ Y.

Let K := conv(B′ ∪ cB). K is convex and contains B′, so since X is locally convex it is a neigh-

borhood of 0. It is also balanced (i.e., x ∈ K ⇒ αx ∈ K for |α| ≤ 1) because B′ and cB are

(in particular, linear scaling is easy since convex, and scalar rotation is possible since multiplying

k = tb1+(1− t)b2 for bi ∈ B′ ∪ cB by |α| = 1 gives αk = t(αb1)+ (1− t)(αb2) - proceed by induction

on number of terms). Also, c′B ⊂ B′ ∪ cB, and since c′B is convex we have

cB ⊂ K ⊂ c′B,

so K is bounded. We now invoke the following theorem:

Let K ⊂ V be a convex, bounded, balanced neighborhood of 0. Then

µK := inf{r > 0 : x ∈ rK}

is a norm on V , and ∥·∥ = µBV
.

(We know the seminorm µK is a norm here since V is a normed space. Here V may be X or Y ; we

will use it in both cases.) We now split the rest of the proof into two:

(1) µk is equivalent to ∥·∥. Observe that

c∥·∥1 = cµB = µcB ≤ µK ≤ µc′B = c′µB = c′∥·∥1.

(2) µk extends ∥·∥2 on Y . We want to verify that K ∩ Y = B′. Clearly B′ ⊂ K ∩ Y ; to show the

opposite inclusion, suppose y ∈ K ∩ Y . Then

y = λy1 + (1− λ)y2

for some λ ∈ [0, 1], y1 ∈ B′, y2 ∈ cB. Easy to see if λ = 1; otherwise

y2 =
1

1− λ
(y − λy1) ∈ Y ∩ cB ⊂ B′.

So y ∈ B′ since B′ is convex, and K ∩ Y = B′. Therefore

µk(y) = inf{r > 0 : y ∈ rK} = inf{r > 0 : y ∈ rB′} = µB′(y) = ∥y∥2.

Problem 8. Let (fn) be a sequence of continuous functions on [0, 1], such that for each x ∈ [0, 1]

there is an nx ∈ N, so that fn(x) ≥ 0 for all n ≥ nx.

Show that there are an N ∈ N and an open nonempty interval I ⊆ [0, 1], so that fn(x) ≥ 0 for all

n ≥ N and x ∈ I.
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Proof. Baire Category Theorem time! Define

Fn := {x : fn(x) ≥ 0} = f−1
n [0,∞) and En =

∞⋂
k=n

Fn.

Then (En) is a sequence of closed sets, and what’s more, since for any x there is some nx such that

fn(x) ≥ 0 for all n ≥ nx,

[0, 1] =

∞⋃
n=1

En.

Since [0, 1] is not a countable union of nowhere dense sets, there is some N such that EN has nonempty

interior. Pick an interval I ⊂ EN . Then since the (En) are nested, for all x ∈ I fn(x) ≥ 0 for all

n ≥ N .

Problem 9. For a bounded sequence (fn) ⊂ C[0, 1], show that

fn →n→∞ 0 weakly ⇐⇒ fn(x) →n→∞ 0 for all x ∈ [0, 1].

Proof. See Problem 4 of August 2010.

Problem 10. On the set [0,∞] consider the topology T generated by the open sets (in the usual

topology) of [0,∞) and the sets of the form [0,∞]\C, with C ⊂ [0,∞) compact.

(a) Show that [0,∞] with above defined topology is a compact space.

(b) Show that [0,∞] with above defined topology is metrizable. Hint: consider a continuous, strictly

increasing, and bounded function f : [0,∞) → [0,∞).

(c) Show that the linear space generated by the functions of the form e−nx2

, n = 1, 2, 3 . . . , is dense

(with respect to sup-norm) in the space of all continuous functions f : [0,∞] → R having the

property that f(∞) = 0.

Proof. For context on this space, review the information surrounding Proposition 4.36 in Folland.

(a) Take an open cover U of [0,∞]. There is some U ∈ U containing ∞; then U covers U c, which is

compact, and the finite subcover (Ui)
n
1 of U c together with U covers [0,∞].

(b) We construct a homeomorphism f̃ : [0,∞] → [0, 1]. Since [0, 1] is metrizable, this will complete

the proof.

Let f : [0,∞) → [0, 1) be a continuous increasing bijection (such as f(x) = 2
π tan−1(x)). Then there

is a continuous extension f̃(∞) = 1 iff f − 1 ∈ C0([0,∞)). But this is clear: since f is increasing,

{x : |f(x)| ≥ ε} = [0, tan(π2 (1− ε))]. Similarly, f̃−1 is continuous since [0,∞] is compact and [0, 1] is

Hausdorff.

(c) You already know this is Stone-Weierstrass. It is your favorite theorem, how could you not know?

Let E be the span of these functions. It is easy to see this is an algebra. Also, f(x) = e−x2

sep-

arates points of [0,∞] since it is decreasing, and f(∞) = limn→∞ e−n2

= 0. Stone-Weierstrass

completes the proof.
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10 August 2019

Problem 1. Let (X,M, µ) be a measure space and f a measurable non-negative function on X.

Define ν : M → [0,∞] by

ν(E) =

∫
E

fdµ.

(a) Prove that ν is a measure.

Proof. Indeed, it’s clear that ν(E) =
∫
E
fdµ ≥ 0 for all E since f is assumed to be non-

negative. It’s equally clear that ν(∅) =
∫
∅ fdµ = 0.

We are only left to prove countable additivity. Take a countable collection {Ei} of pairwise dis-

joint sets in M, so we see for finitely many

ν

(
N⋃

k=1

Ek

)
=

∫
⋃N

k=1 Ek

fdµ =

∫
χ⋃N

k=1 Ek
fdµ =

N∑
k=1

∫
χEk

fdµ =

N∑
k=1

∫
Ek

fdµ =

N∑
k=1

ν(Ek).

By the monotone convergence theorem (the finite sums of characteristic functions form an in-

creasing sequence that converges to the infinite sum pointwise), then ν is countably additive.

Hence, ν is a measure.

(b) Prove that g ∈ L1(ν) if and only if gf ∈ L1(µ) and in that case
∫
X
gdν =

∫
X
gfdµ.

Proof. First we show that ν ≪ µ. Indeed, if µ(E) = 0 then choose an increasing sequence of

simple functions fn such that fn → f . Then by monotone convergence theorem and the defini-

tion of integral for simple functions, we have

ν(E) =

∫
E

fdµ =

∫
E

(lim fn)dµ = lim

∫
E

fndµ = 0.

Then we may apply Radon-Nikodym theorem to see that f = dν
dµ and see that g ∈ L1(ν) if

and only if
∫
X
|g|dν < ∞ which is equivalent to

∫
X
|g|fdµ =

∫
X
|g| dνdµdµ < ∞. Since f is

non-negative, this is equivalent to having
∫
X
|gf |dµ < ∞. Radon-Nikodym also tells us that∫

X
gdν =

∫
X
gfdµ.

Problem 2. (a) State Fatou’s lemma.

Proof. For fn ∈ L+ then ∫
lim inf fn ≤ lim inf

∫
fn

(b) State the dominated convergence theorem
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Proof. Let g, gn ∈ L+ be measurable, |fn| ≤ gn µ-a.e., fn → f and gn → f µ-a.e. with
∫
gn →∫

g <∞. Then
∫
fn →

∫
f . Moreover,

∫
|f − fn| → 0.

(c) Let fn, gn, hn, f, g, h be measurable functions on Rn satisfying fn ≤ gn ≤ hn, fn → f a.e.,

gn → g a.e., and hn → h a.e. Suppose moreover that f, h ∈ L1 and
∫
fn →

∫
f ,
∫
hn →

∫
h.

Prove that g ∈ L1 and
∫
gn →

∫
g.

Proof. We know gn − fn ≥ 0 and hn − gn ≥ 0. By Fatou’s Lemma,∫
g −

∫
f =

∫
lim inf(gn − fn) ≤ lim inf

∫
(gn − fn) = lim inf

∫
gn −

∫
f.

(A quick note on the last equality: usually lim inf(
∫
gn −

∫
fn) ≥ lim inf

∫
gn −

∫
f , but any

subsequential limit of
∫
fn is still

∫
f , so we get equality here.)

Since
∫
f <∞, we get

∫
g ≤ lim inf

∫
gn.

Similarly, ∫
h−

∫
g =

∫
lim inf(hngn) ≤ lim inf

∫
(hn − gn) =

∫
h− lim sup

∫
gn,

so
∫
h <∞ implies lim sup

∫
gn ≤

∫
g. So lim sup

∫
gn ≤

∫
g ≤ lim inf

∫
gn and

∫
gn →

∫
g.

We have |g| ≤ |h| whenever g ≥ 0 and |g| ≤ |f | whenever g < 0. So |g| ≤ |f |+ |h| ∈ L1.

Problem 3. Let {Ak}∞k=1 be measurable subsets of a measure space and define Bm to be the set of

all points which are contained in at least m of the sets {Ak}∞k=1. Prove that Bm is measurable and

µ(Bm) ≤ 1

m

∞∑
k=1

µ(Ak).

Proof. Let C = {F ⊆ N | |F | = m} which is a countable infinite set. Then we may express

Bm =
⋃
F∈C

⋂
i∈F

Ai.

Therefore, each Bm is measurable.

Then

χBm
(x) = 1 ⇐⇒

∞∑
k=1

χAk
(x) ≥ m,

so thus mχBm ≤
∑∞

k=1 χAk
. Therefore

mµ(Bm) =

∫
mχBm

dµ ≤
∞∑
k=1

∫
χAk

dµ =

∫ ∞

k=1

µ(Ak).
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Problem 4. Let E be a subset of R which is not Lebesgue measurable. Prove that there exists an

η > 0 such that for any two Lebesgue measurable sets A,B satisfying A ⊆ E ⊆ B one has λ(B\A) >
η, where λ denotes Lebesgue measure.

Proof. Since E is nonmeasurable, there exists z ∈ Z such that Ez := E ∩ [z, z + 1) is nonmeasurable.

So suppose we can construct sequences (An), (Bn) s.t. An, Bn ⊆ [z, z + 1),

An ⊆ An+1 ⊆ Ez ⊆ Bn+1 ⊆ Bn ∀n,

and λ(Bn\An) <
1
n . Take A =

⋃
An and B =

⋂
Bn; then λ(B\A) = 0 and Ez\A ⊆ B\A. But λ is

a complete measure, so Ez\A is measurable, as is A ∪ (Ez\A), contradiction.

Problem 5. Let {Ak}∞k=1 be Lebesgue measurable sets in Rn equipped with Lebesgue measure λ.

(a) Prove that if Ak ⊆ Ak+1 for all k then λ(
⋃∞

k=1Ak) = limk→∞ λ(Ak)

Proof. We will assume that λ is subadditive, so λ(
⋃∞

1 Ak) ≤
∑∞

1 λ(Ak).Then by setting Ak =

∅, we have

λ

(∞⋃
1

Ak

)
=

∞∑
1

λ(Aj\Aj−1) = lim
n→∞

n∑
1

λ(Aj\Aj−1) = lim
n→∞

λ(An).

(b) Prove that if Ak+1 ⊆ Ak for all k and λ(A1) <∞ then λ(
⋂∞

k=1Ak) = limk→∞ λ(Ak)

Proof. Let Bj = A1\Aj so B1 ⊆ B2 ⊆ . . ., and λ(A1) = λ(Bj) + λ(Aj), and
⋃∞

1 Bj =

E1\(
⋂∞

1 Aj). Then by part (a), we have

λ(A1) = λ

(∞⋂
1

Aj

)
+ lim

j→∞
λ(Bj) = λ

(∞⋂
1

Aj

)
+ lim

j→∞
(λ(A1)− λ(Aj)).

Since λ(A1) <∞, we may subtract it from both sides to yield the desired result.

(c) Give an example showing that without assuming λ(A1) < ∞ the conclusion of the previous part

does not hold.

Proof. Consider Aj = [j,∞) so that for each j, λ(Aj) = ∞ but
⋂∞

1 Aj = ∅ so λ(
⋂∞

1 Aj) =

0.

Problem 6. Let X and Y be Banach spaces. Show that the linear space X ⊕ Y is a Banach space

under the norm ∥(x, y)∥ = ∥x∥+ ∥y∥. Also determine (with justification) the dual (X ⊕ Y )∗.

Proof. A bit of a pencil pusher :)

First, ∥(x, y)∥ is a norm since

(i) ∥x∥+ ∥y∥ = 0 ⇐⇒ ∥x∥, ∥y∥ = 0 ⇐⇒ x, y = 0 ⇐⇒ (x, y) = 0.
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(ii) ∥(x1, y1) + (x2, y2)∥ = ∥x1 + x2∥+ ∥y1 + y2∥ ≤ ∥x1∥+ ∥y1∥+ ∥x2∥+ ∥y2∥.

(iii) ∥λ(x, y)∥ = ∥(λx, λy)∥ = |λ|(∥x∥+ ∥y∥) = |λ|∥(x, y)∥.

Suppose
∑

∥(xi, yi)∥ < ∞. Then so is
∑

∥xi∥,
∑

∥yi∥, so there exist x ∈ X, y ∈ Y such that∑
xn → x,

∑
yn → y in norm. So

∥(x, y)−
n∑

i=1

(xn, yn)∥ = ∥(x−
n∑

i=1

xi, y −
n∑

i=1

yi∥

= ∥x−
n∑

i=1

xi∥+ ∥y −
n∑

i=1

yi∥ → 0.

We claim (X ⊕ Y )∗ = X∗ ⊕ Y ∗, where ϕ ⊕ ψ(x, y) = ϕ(x) + ψ(y). First, given ϕ ∈ X∗, ψ ∈ Y ∗, we

claim ϕ⊕ ψ is linear:

(ϕ⊕ ψ)(λx1 + x2), λy1 + y2) = λϕ(x1) + λψ(y1) + ϕ(x2) + ψ(y2)

= λ(ϕ⊕ ψ)(x1, y2) + (ϕ⊕ ψ)(x+ 2, y + 2).

It is also clear ∥ϕ⊕ ψ∥ ≤ ∥ϕ∥+ ∥ψ∥, so this is bounded.

Now let ξ ∈ (X ⊕ Y )∗. Note

ξ(x, y) = ξ(x, 0) + ξ(0, y),

and let ξX ∈ X∗, ξY ∈ Y ∗ be

ξXx = ξ(x, 0) and ξY y = ξ(0, y).

Then ∥ξX∥ = sup∥x∥=1∥ξ(x, 0)∥ ≤ ∥ξ∥ ≥ ∥ξY ∥. We still need to show the norm is preserved between

these two spaces: i.e., ∥ϕ ⊕ ψ∥ = ∥ϕ∥ + ∥ψ∥. But all we need is some sequences (xn) ⊂ X and

(yn) ⊂ Y approximating the norm of ϕ, ψ in these respective spaces; then ∥(ϕ ⊕ ψ)(xn, yn)∥ =

∥ϕ(xn)∥+ ∥ψ(yn)∥ approaches this sum. So ξ = ξX ⊕ ξY .

Problem 7. For each n ∈ N define on ℓ∞ the linear functional φn(x) = n−1
∑n

k=1 x(k). Let φ be

the weak* cluster point of the sequence {φn}. Show that φ does not belong to the image of ℓ1 under

the canonical embedding ℓ1 ↪→ (ℓ∞)∗.

Proof. See August 2018, Problem 10(c).

Problem 8. Let T : X → Y be a surjective linear map between Banach spaces and suppose that

there is a λ > 0 such that ∥Tx∥ ≥ λ∥x∥ for all x ∈ X. Show that T is bounded.

Proof. See January 2009, Problem 6, amongst others.

Problem 9. Let X be a compact metric space and µ a regular Borel measure on X. Let f : X →
[0,∞) be a continuous function and for each n ∈ N set fn(x) = f(x)1/n for all x ∈ X. Show that∫
fndµ→ µ(supp f) as n→ ∞ where supp f = {x ∈ X | f(x) > 0}.

Proof. See January 2011, Problem 4, amongst others.
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Problem 10. Let X be a compact metric space and let x ∈ X. Suppose that the point mass δx is

the weak* limit of a sequence of atomless Radon measures on X (viewing all of these measures as

elements of C(X)∗). Show that every neighborhood of x is uncountable.

Proof. Recall: if µn → δx weak*, this means for all f ∈ C(X),
∫
f dµn →

∫
f dδx. Suppose U ∋ x

open such that U is countable. By Urysohn, ∃f ∈ C(X) such that f(x) = 1, 0 ≤ f ≤ 1, and f = 0

on U c. Then

1 = f(x) = lim
n

∫
f dµn ≤ lim sup

n

∫
χU dµn = lim sup

n
µn(U).

Thus there is some n such that µn(U) > 0. Write U = {u1, u2, . . . }. Then since
∑∞

k=1 µn({uk}) =

µn(U) > 0, there must be some k such that µn({uk}) > 0. So {uk} is an atom for µn which contra-

dicts the fact that µk is atomless.

11 January 2019

Problem 1. True or false (prove or give a counter example)

(a) Let E ⊆ R be a Borel set, then {(x, y) ∈ R2 | x− y ∈ E} is a Borel set in R2.

Proof. TRUE.

Define f(x, y) = x− y : R2 → R. This is continuous. Let

A := {S ⊆ R | f−1(S) is a Borel set of R2}

Then A is a σ-algebra (easy to check). If S is open, then f−1(S) is open in R2, thus Borel. So

{open sets} ⊆ A and so the Borel algebra is a subset of A. In particular, E ∈ A.

(b) Let E ⊆ Q := [0, 1]× [0, 1]. Assume that for every x, y ∈ [0, 1] the sets Ex = {y ∈ [0, 1] | (x, y) ∈
E} and Ey = {x ∈ [0, 1] | (x, y) ∈ E} are Borel. Then E is Borel.

Proof. FALSE.

Consider a non-Borel set A ⊂ [0, 1]. Set E = {(x, x) | x ∈ A}. Then each Ey and Ex is a

singleton which is Borel, but E is not.

(c) A function f : R → R is called Lipschitz if there exits a M > 0 such that ∀x, y ∈ R, |f(x) −
f(y)| ≤ M |x − y|. If A ⊆ R is Lebesgue measureable and f is Lipschitz then f(A) is Lebesgue

measurable.

Proof. TRUE.

Since A is Lebesgue measurable, then we can write A =
(⋃

j Kj

)
∪ N where each Kj is a com-

pact set and N has Lebesgue measure zero. Then f(A) =
(⋃

j f(Kj)
)
∪ f(N). It’s clear that

each f(Kj) is Lebesgue measurable, since f is Lipschitz. We are only left to see that f(N) is

also Lebesgue measurable.
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Indeed, for every ϵ > 0 we can write N ⊆
⋃

k Bk where each Bk is a ball of radius rk and∑
km(Bk) < ϵ. But then by Lipschitz continuity, f(Bk) is contained in a ball of radius Mrk

where M is the Lipschitz constant of f . Thus, m(f(Bk)) ≤ Mm(Bk) so that m(f(N)) ≤
M
∑

km(Bk) < Mϵ. Let ϵ → 0 so f(N) must have outer measure equal to zero, hence it is a

null set.

Problem 2. Let (X,F , µ) be a measure space. is it true that for every measurable essentially bounded

f : X → R we have limp→∞ ∥f∥p = ∥f∥∞? Give an answer both in the case that µ is finite and the

case that µ is σ-finite.

Proof. If µ is finite: By Hölder, we know that ∥f∥p ≤ ∥f∥q when p ≤ q. Also, ∥f∥p ≤ ∥f∥∞ for all p.

Therefore, ∥f∥p ↗≤ ∥f∥∞ and so limp ∥f∥p ≤ ∥f∥∞.

On the other hand, for every ϵ > 0, let E = {x | |f(x)| > ∥f∥∞ − ϵ} and 0 < µ(E) ≤ 1 since ∥f∥∞ =

esssup |f(x)| < ∞. Then ∥f∥pp ≥
∫
E
|f |p >

(
∥f∥∞ − ϵ

)p
µ(E). Take p → ∞ so limp ∥f∥p ≥ ∥f∥∞ − ϵ,

implying limp ∥f∥p ≥ ∥f∥∞.

If µ is σ-finite: No, this is not true. Consider f(x) = 1
x on [1,∞). Then limp ∥f∥p = 0 ̸= ∥f∥∞ =

1.

Problem 3. Let f : R → R Lebesgue integrable and for n ∈ N define

gn(x) = n

∫
(x,x+1/n)

fdλ.

(a) Prove that limn→∞ gn = f λ-a.e.

Proof. This is Lebesgue Differentiation Theorem, with Er = (x, x+ r).

(b) Prove that for every n ∈ N,
∫
R |gn|dλ ≤

∫
R |f |dλ.

Proof. ∫
R
|gn(y)| dλ(y) =

∫
R
|n
∫ y+ 1

n

y

f(t) dλ(t)| dλ(y)

≤ n

∫
R

∫ y+ 1
n

y

|f(t)| dλ(t) dλ(y)

Tonelli
= n

∫
R

∫ t

t− 1
n

|f(t)| dλ(y) dλ(t)

= n

∫
R

1

n
|f(t)| dλ(t)

=

∫
R
|f | dλ.

(c) Prove limn→∞
∫
R |gn|dλ =

∫
R |f |dλ.
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Proof. Apply dominated convergence theorem with parts (a) and (b).

Problem 4. Let f ∈ L1((0, 1]2, λ2) such that
∫
(0,x]×(0,y]

fdλ2 = 0 for every x, y ∈ (0, 1]. Prove that

f = 0 λ2-a.e.

Proof. First note that

(a, b)× (c, d) =
⋃
n

((0, b− 1/n]× (0, d− 1/n]) \ ((0, a]× (0, 1] ∪ (0, 1]× (0, b])

And since all open rectangles generate all Borel sets in R2, then we have that for every Borel set

B ⊆ R2,
∫
B
fdλ2 = 0.

Since every Lebesgue set A is of the form A = B ∪N where B is a Borel measurable set and N is a

set of measure zero. Hence,
∫
A
fdλ2 = 0 for any Lebesgue measurable set A.

Now consider A+ = {x | f(x) > 0} and A− = {x | f(x) < 0}. Since both are measurable, then∫
A+ fdλ2 = 0 =

∫
A− fdλ2. Hence, f = 0 λ2-a.e.

Problem 5. Let λ be the Lebesgue measure on R. Let E ⊆ R be Lebesgue measurable such that

0 < λ(E) <∞. Prove that for all 0 ≤ γ < 1 there exists an open interval I ⊆ R such that

λ(E ∩ I) ≥ γλ(I).

Proof. Choose an open set O ⊃ E such that λ(E) ≥ γλ(O). We can write O =
⋃

iOI for open and

disjoint intervals Oi. Hence

E = E ∩O = E ∩
⋃
i

Oi =
⋃
i

(E ∩Oi)

Suppose to the contrary that λ(E ∩Oi) < γλ(Oi) for all i. Then

λ(E) = λ
(⋃

(E ∩Oi)
)
=
∑
i

λ(E ∩Oi) < γ
∑
i

λ(Oi) = γλ(O)

which is a contradiction with the fact that λ(E) ≥ γλ(O). Hence, it must be that for some k, λ(E ∩
Ok) ≥ γλ(Ok).

Problem 6. Let X be a compact metrizable space and {µn} a sequence of Borel measures on X

with µn(X) = 1 for every n. Consider the linear map φ : C(X) → ℓ∞(N) defined by φ(f) =(∫
X
fdµn

)
n
. What conditions on the sequence {µn} are equivalent to φ being an isometry? Provide

justification.

Proof. We claim ϕ is an isometry iff ∀U ⊆ X open, nonempty,supn µn(U) = 1.
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(⇐) If there exists such a set such that µn(U) < 1 − ε for all n for some ε > 0, then by Urysohn

(metrizable⇒Hausdorff) there is a continuous function f : X → [0, 1] such that f is 0 on U c. Then

|
∫
f dµn| = |

∫
U

f dµn ≤ µn(U) < 1− ε.

So ∥ϕ(f)∥∞ ≤ 1− ε < 1 = ∥f∥C(X).

(⇒) Fix ε > 0 and consider

U := {x ∈ X : |f(x)| > ∥f∥C(x) − ε}.

Then U is nonempty and open in X. So

|
∫
f dµn| = |

∫
U

f dµn +

∫
Uc

f dµn|

≥ |
∫
U

f dµn| − |
∫
Uc

f dµn|

≥ (∥f∥C(X) − ε)µn(U)− ∥f∥C(X)µn(U
c).

So

sup
n

|
∫
f dµn| ≥ ∥f∥C(X) − ε,

and hence ∥ϕ(f)∥∞ ≥ ∥f∥C(X).

Problem 7. Let X be a compact metric space and {fn} a sequence in C(X). Prove that {fn} con-

verges weakly in C(X) if and only if it converges pointwise and supn ∥fn∥ <∞. Also, give an exam-

ple of an X and a sequence {fn} in C(X) which converges weakly but not uniformly.

Proof. By considering fn − f , we may assume without loss of generality that fn converges to 0.

⇒) We know C[0, 1]∗ = M[0, 1]. Then fn → 0 weakly implies
∫
fndµ → 0 for all µ ∈ M[0, 1].

Choose µ = δt so

∫
fndδt = fn(t) → 0 ∀t ∈ [0, 1]

(this follows from the fact that weak convergence implies uniformly bounded). Consider

χ : C[0, 1] → C[0, 1]∗∗ = M[0, 1]∗

χ(fn)(µ) = µ(fn)

Since µ(fn) → 0 then χ(fn)(µ) → 0 for all µ ∈ M[0, 1]. Since convergent sequences are bounded,

then supn |χ(fn)(µ)| ≤M .

By the uniform boundedness theorem, supn ∥χ(fn)∥ <∞. By isometry, ∥fn∥ = ∥χ(fn)∥ so supn ∥fn∥ <
∞.
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⇐) By Dominated Convergence Theorem, fn → 0 in L1(µ). So therefore, |
∫
fndµ| ≤

∫
|fn|d|µ| → 0.

So fn → 0 weakly.

Example: Take X = [0, 1] and consider the functions

fn(x) =


nx x ∈ [0, 1/n]

−nx+ 2 x ∈ (1/n, 2/n]

0 x ∈ (2/n, 1]

Then they converge to 0 weakly, but not strongly.

Problem 8. Let X be a Banach space. Show that if X∗∗ is separable then so is X. Also, give an

example, with justification, to show that the converse is false.

Proof. We will show the weaker result that states that if the dual X∗ is separable, then so is X.

Let X∗ be separable. Consider the unit sphere SX∗ = {φ ∈ X∗ | ∥φ∥ = 1}. Then SX∗ is separable

and so we can let {φn} be a countable dense subset of SX∗ .

For each n ∈ N, choose xn ∈ N with ∥xn∥ = 1 such that |φn(xn)| > 1/2. Let D = span{x1, x2, . . .}.

Then D is countable; ex. we can consider the following set countable and dense subset of D:

⋃
n∈N


n∑

j=1

(aj + ibj)xj | aj , bj ∈ Q


We want to show that D = X. Suppose it were not, then there ewould be some φ ∈ SX∗ with

φ|D = 0. Since {φn} is dense, there exists some n such that ∥φ− φn∥ < 1/4. Therefore,

1

2
≤ |φn(xn)| = |φn(xn)− φ(xn)| ≤ ∥φn − φ∥∥xn∥ <

1

4
.

This is a contradiction and hence, D = X.

example. c0 is separable, but ℓ∞ = c∗∗0 is not separable.

Problem 9. (a) Let X be a compact metrizable space. Describe the dual of C(X) according to the

Riesz representation theorem.

Proof. For every φ ∈ C(X)∗, there exists a unique finite regular signed measure µ on the Borel

subsets of X such that

φ(f) =

∫
X

fdµ

for each f ∈ C(X). Moreover, ∥φ∥ = |µ|(X).
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(b) Consider the spaces X = {1/n | n ∈ N} ∪ {0} and Y = [0, 1] with the topologies inherited from

R. Prove that there does not exist a bijective bounded linear map from C(X) to C(Y ).

Proof. By contradiction. Suppose there exists a bijective bounded linear map T : C(X) →
C(Y ). Then by the Open Mapping Theorem (or more accurately, the corollary that is the Bounded

Inverse Theorem), then T−1 is a bijective bounded linear map from C(Y ) to C(X). This says

that the two spaces are isomorphic.

Therefore, the transpose map induces an isomorphism from C(X)∗ ∼= C(Y )∗. I.e., T⊥(f)(y) =

f(Ty) has norm ∥T∥ and has a bounded inverse (T⊥)−1(g)(x) = g(T−1x). We claim C(X)∗ is

separable while C(Y )∗ is not.

The point-masses on Y are each of distance 2 from each other, since continuous functions sep-

arate points. Since Y has uncountably many points, (B(1, δy))y∈Y ⊂ M(Y ) is an uncountable

disjoint collection of open sets, showing C(Y )∗ is not separable.

We claim the rational span of (δ1/n)n is dense in C(X)∗. Any measure on X ∩ (0, 1] can be ap-

proximated uniformly by rational point-mass functions as X ∩ (0, 1] is totally disconnected (for

example, given µ ∈ M(X) and for each 1
n we can choose qin such that |µ( 1n ) − qin| ≤ 1

2−n ). Now

µ(X) = limµ(
⋃∞

k=1X ∩ [1/k, 1]) since µ is Radon, so µ({0}) = 0 and the proof is complete.

Problem 10. Let X be a Banach space and Y a subspace of X. Show that ∥x+ Y ∥ = inf{∥x+ y∥ |
y ∈ Y } defines a norm on X/Y if and only if Y is closed.

Proof. ⇐) Suppose Y is closed. It’s easy to see ∥x + Y ∥ is well-defined and a semi-norm. Suppose

∥x + Y ∥ = 0. Then there exists yn ∈ Y such that ∥x − yn∥ → 0. Since Y is closed, then x ∈ Y .

Therefore, x+ Y = Y = 0 + Y which is the zero vector in X/Y .

⇒) Suppose this is a norm. Take any convergent sequence yn in Y with yn → y′. Then infy∈Y ∥y −
y′∥ ≤ ∥yn − y′∥ → 0 and so ∥y′ + Y ∥ = 0. Since this is a norm, then y′ + Y = 0 + Y = Y and so

y′ ∈ Y . Hence Y must be closed.

12 August 2018

(Solve any 10 of the following 12 problems)

Problem 1. Let µ and ν be positive measures on the same measurable space with ν finite and abso-

lutely continuous with respect to µ. Show that for every ϵ > 0, there exists δ > 0 such that µ(E) < δ

implies ν(E) < ϵ.

Proof. Suppose for contradiction that ∃ϵ > 0 such that µ(E) < δ then ν(E) ≥ ϵ for all δ > 0 adn

for some E. We’ll construct the set En to be some set with µ(En) < 2−n. Let Fk =
⋃∞

n=k En so

µ(Fk) < 2−k+1.

Let F =
⋂∞

k=1 Fk so µ(F ) = 0. Since ν ≪ µ, then ν(F ) = 0.

However, since Fk is a decreasing sequence, we have
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ν(F ) = lim
n
ν

(
n⋂

k=1

Fk

)
= lim

n
ν(Fn) ≥ ϵ.

Contradiction!

Problem 2. Let µ be a positive measure. Suppose that (fn)
∞
n=1 is a Cauchy sequence in L1(µ).

Show that for all ϵ > 0 there exists a δ > 0 such that µ(E) < δ implies

∀n ≥ 1

∣∣∣∣∫
E

fndµ

∣∣∣∣ < ϵ.

You may use without proof the result of problem #1.

Proof. Let ϵ > 0. Since {fn} is Cauchy in L1(µ), there exists f ∈ L1(mu) such that fn → f in

L1(µ) as n→ ∞, since L1(µ) is a Banach space.

Define ν(E) :=
∣∣∫

E
fdµ

∣∣.
Then by Problem 1, there exists some δ > 0 such that ν(E) =

∣∣∫
E
fdµ

∣∣ < ϵ/2 when µ(E) < δ, thenf

or large enough n (say n ≥ N) we have

∣∣∣∣∫
E

fndµ

∣∣∣∣ = ∣∣∣∣∫
E

(fn − f + f)dµ

∣∣∣∣ ≤ ∣∣∣∣∫
E

fn − fdµ

∣∣∣∣+ ∣∣∣∣∫
E

fdµ

∣∣∣∣ < ϵ

2
+
ϵ

2
= ϵ

for µ(E) < δ.

For each i,N , we can find δi such that
∣∣∫

E
fidµ

∣∣ < ϵ when µ(E) < δi. By the same reasoning as

above, if we set δ̃ = min{δ1, . . . , δN−1, δ} then
∣∣∫

E
fndµ

∣∣ < ϵ whenever µ(E) < δ̃ for all n ∈ N.

Problem 3. Let f : [0, 1] → [0,∞) be Lebesgue measurable. For n ∈ N define

gn =
fn

1 + fn
.

(a) Explain why
∫ 1

0
gn(t)dt exists and is finite for all n.

Proof. Since gn = fn

1+fn ≤ 1 for all n, then
∫ 1

0
gndx ≤

∫ 1

0
1dx = 1 for all n.

(b) Prove that limn

∫ 1

0
gn(t)dt exists and find an expression for it. Make sure to state which major

theorems you are using in your proof.

Proof. Define E1 = {x | 0 ≤ f(x) < 1}, E2 = {x | f(x) = 1} and E3 = {x | f(x) > 1}.

If x ∈ E1 then gn(x) =
fn(x)

1+fn(x) → 0. So by DCT, limn

∫
E1
gndx =

∫
E1

0dx = 0.

If x ∈ E2 then gn(x) =
fn(x)

1+fn(x) =
1
2 for all n and so

51



12 AUGUST 2018 Texas A&M

lim
n

∫
E2

gndx =

∫
E2

1

2
dx =

1

2
m(E2).

If x ∈ E3 then gn(x) =
fn(x)

1+fn(x) → 1 and so by DCT,

lim
n

∫
E3

gndx =

∫
E3

dx = m(E3).

Thus,

lim
n

∫ 1

0

gndx = lim
n

∫
E1

gndx+

∫
E2

gndx+

∫
E3

gndx =
1

2
m(E2) +m(E3).

Problem 4. Consider C([0, 1]) endowed with its usual uniform norm. Prove or disprove that there

is a bounded linear functional φ on C([0, 1]) such that for all polynomials p, we have φ(p) = p′(0),

where p′ is the derivative of p.

Proof. DISPROVE.

Consider pn = 1 − (x − 1)n so then ∥pn∥∞ = 1 but p′n(0) = n → ∞. If such a φ existed, then

n = |φ(pn)| = ∥φ(pn)∥ ≤ c∥pn∥ which cannot happen.

Problem 5. (a) Define the product topology on the Cartesian product Πα∈AXα of a family of topo-

logical spaces (Xα)α∈A

Proof. The product topology is the weak topology generated by πα :
∏

α∈AXα being the coor-

dinate maps. Its subbase is the collection π−1
α (Uα) for Uα open in Xα.

(b) State Tychonoff’s compactness theorem.

Proof. If {Xα} is a family of compact topological spaces then Πα∈AXα is compact.

(c) State and prove the Banach-Alaoglu theorem (Hint: Use Tychonoff’s theorem)

Proof. Thoerem: Let X be a normed vector space. The closed unit ball {f ∈ X∗ | ∥f∥ ≤ 1} is

compact in the weak*-topology.

For all x ∈ X, let Dx := {ξ | |ξ| ≤ ∥x∥} ⊆ C. Then Dx is compact, and by Tychonoff’s theorem,

D := Πx∈XDx is comapct. Define complex function φ with φ(x) ≤ ∥x∥.

We define B∗ ⊆ D to consist of linear functions of D. We claim B∗ is closed. Indeed, let {fα}
be a net in B∗ that converges to f . Then

f(ax+ by) = lim fα(ax+ by) = lim(afα(x) + bfα(y)) = a lim fα(x) + b lim fα(y) = af(x) + bf(y).

So f ∈ B∗. Since closed subsets of comapct spaces are compact, then B∗ is compact in the

weak*-topology.

52



12 AUGUST 2018 Texas A&M

Problem 6. Let (X, d) be a compact metric space.

(a) Show that X has a countable, dense set {xn | n ∈ N}.

Proof. If X is countable, we are done. So suppose X is uncountable. Since X is compact, for

all n ∈ N, X can be covered by finitely many balls of radius 1
n . For each n, choose such a fi-

nite cover with balls centered at the points {xnj }
Nn
j=1. Then the collection E :=

⋃
n{xnj }

Nn
j=1 is

countable.

For x ∈ X, for all n ∈ N, x ∈ B(1/n, xnj ) for some xnj ∈ E so E is dense.

(b) Let fn : X → [0,∞) be fn(x) = d(x, xn). Show that if x, y ∈ X and fn(x) = fn(y) for all n ∈ N,
then x = y.

Proof. We then have that d(x, xn) = d(y, xn) for all n. We know for all m ∈ N we can find xm
such that d(x, xm) < 1/m so d(y, xm) < 1/m. So we can find a sequence {xm}∞m=1 such that

xm → x and xm → y as m → ∞. But X is a metric space and thus Hausdorff, so limits are

unique. Therefore, x = y.

Problem 7. Let K > 0 and let LipK be the set of functions f : R → R satisfying |f(x) − f(y)| ≤
K|x− y|.

(a) Prove that

d(f1, f2) =

∞∑
j=0

2−j sup
x∈[−j,j]

|f1(x)− f2(x)|

defines a metric on LipK

Proof. First, suppose d(f1, f2) = 0. Then
∑∞

j=0 2
−j supx∈[−j,j] |f1(x)−f2(x)| = 0 so supx∈[−j,j] |f1(x)−

f2(x)| = 0 for all j. Thus, f1(x) = f2(x) for all x.

It’s trivial to see that d(f1, f2) = d(f2, f1).

Finally,we’ll show the triangle inequality. This again follows directly: |f1(x) − f2(x)| ≤ |f1(x) −
f3(x)| + |f3(x) − f2(x)| for all x. Taking sup on both sodies and multiplying by 2−j we get

d(f1, f2) ≤ d(f1, f3) + d(f1, f2).

(b) Prove that LipK is a complete metric space

Proof. Suppose (fn) is a Cauchy sequence in LipK . Then for every ϵ > 0 there exists N ∈ N
such that d(f1, fm) =

∑∞
j=1 2

−j supx∈[−j,j] |f1(x) − f2(x)| < ϵ. Then for each j and x ∈ [−j, j]
we have |fn(x)− fm(x)| < ϵ′.

Thus, {fn(ξ)} is Cauchy sequence on [−j, j] for each ξ. But we can find f(x) such that fn(x) →
f(x).

We want to show that d(fn, f) → 0. Since fn(x) → f(x), then for all ϵ > 0 we can find some

N ∈ N such that for all n ≥ N , |fn(x)− f(x)| < ϵ. THen
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d(fn, f) =

∞∑
j=1

2−j sup
x∈[−j,j]

|fn(x)− f(x)| <
∞∑
j=1

2−jϵ = ϵ

So d(fn, f) → 0. To see f ∈ LipK ,

|f(x)− f(y)| =
∣∣∣lim

n
fn(x)− lim

n
fn(y)

∣∣∣ = lim
n

|fn(x)− fn(y)| ≤ K lim
n

|x− y| = K|x− y|.

Problem 8. Let X,Y be topological spaces. A map f : X → Y is said to be proper if for every

compact subset K ⊆ Y , the inverse image f−1(K) is compact.

(a) Suppose X is a compact space and Y is Hausdorff. Prove that every continuous map f : X → Y

is proper.

Proof. Let K ⊆ Y be compact. Since Y is Hausdorff, then K is closed. Since f is continuous,

and Y \K is open in Y then f−1(Y \K) is open in X. So f−1(K) = X\f−1(Y \K) is closed.

Since X is compact, f−1(K) is compact.

(b) Give an example of a continuous map which is not proper.

Proof. Consider the constant function 1 : R → R which sends x 7→ 1. So 1−1({1}) = R.

(c) Suppose f : Rm → Rn is a proper continuous map. Prove that f is a closed map, ie. f(C) is

closed in Rn whenever C is a closed subset of Rm.

Proof. Let {yn} ⊆ f(C) with yn → y. Define A = {y} ∪ {yn} (compact). Then f−1(A) is

compact, so there exists xn ∈ f−1(A) ∩ C such that f(xn) = yn. Find a convergent subsequence

xnk
with xnk

→ x for x ∈ C ∩ f−1(A). By continuity of f , we have f(x) = y.

Problem 9. Consider the interval [−π, π] equipped with Lebesgue measure µ. For n ∈ Z, consider
the functions fn ∈ C([−π, π]) given by fn(t) = eint.

(a) Prove that spanC{fn | n ∈ Z} is dense in the space

A := {f ∈ C([−π, π]) | f(−π) = f(π)}

with respect to the uniform norm.

Proof. Let B = spanC{fn} ⊆ A ⊆ C([−π, π]). Note that B separates points and is closed under

complex conjugates. By Stone-Weierstrass, B is dense in C[−π, π] hence also dense in B.

(b) Show that
{

fn√
2π

| n ∈ Z
}

is an orthonormal basis for the Hilbert space L2([−π, π], µ).
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Proof. Note that

∥⟨fn, fn⟩∥2 =

∣∣∣∣∫ π

−π

einte−intdt

∣∣∣∣1/2 =
√
2π

For n ̸= m,

⟨fn, fm⟩ =
∫ π

−π

einte−intdt =
ei(n−m)t

n−m
|π−π = 0.

So they are orthonormal.

(c) Is the following statement true or false?:

“For every f ∈ A, f = limN→∞
1
2π

∑N
n=−N ⟨f, fn⟩fn with respect to the uniform norm.”

Give a brief explanation why or why not.

Proof. TRUE.

Claim:
∑∞

−∞⟨f, fn⟩fn exists. By Pythagorean theorem,
∥∥∑∞

−∞⟨f, fn⟩fn
∥∥ =

∑∞
−∞ ∥⟨f, fn⟩fn∥.

By Bessel’s inequality,
∑∞

−∞⟨f, fn⟩fn is bounded so it exists.

Let g := f −
∑∞

−∞⟨f, fn⟩fn so that

⟨g, fm⟩ = ⟨f, fm⟩ −
∞∑
−∞

⟨⟨f, fn⟩fn, fm⟩ = ⟨f, fm⟩ − ⟨f, fm⟩ = 0.

By completeness of Hilbert spaces, g = 0. So f =
∑∞

−∞⟨f, fn⟩fn.

Problem 10. Let (X, ∥ · ∥) be a normed linear space and let (X∗, ∥ · ∥X∗) denote its dual Banach

space of bounded linear functionals. Recall that ∥φ∥X∗ = sup∥x∥=1 |φ(x)| for φ ∈ X∗

(a) Prove that for each x ∈ X, there exits φ ∈ X∗ with ∥φ∥X∗ = 1 and ∥x∥ = φ(x).

Proof. We will prove the more general case: let M be closed and x ∈ X\M . Then there exists

ϕ ∈ X∗ such that ϕ(x) = infy∈M ∥x− y∥ and ∥ϕ∥ = 1 and ϕ|M = 0.

Restrict to the space M+Cx and define ϕ(y+λx) = λ infy∈M ∥x−y∥. Then ϕ(x) = infy∈M ∥x−
y∥ and ϕ|M = 0.

Since ϕ(x) = ∥x∥, then 1 = ∥x∥
∥x∥ = |ϕ(x)|

∥x∥ ≤ ∥ϕ∥ and

|ϕ(y + λx)| ≤ |ϕ(y)|+ |ϕ(λx)| = 0 + |λ||ϕ(x)| = |λ| inf
y∈M

∥x− y∥ ≤ |λ|∥x− λ−1y∥ = ∥λx+ y∥.

Therefore, ∥ϕ∥ = supy+λx
|ϕ(y+λx)|
∥λx+y∥ ≤ 1 so ∥ϕ∥ = 1.

Finally, if we define p(x) = ∥x∥ for x ∈ M + Cx then by Hahn-Banach, ϕ can be extended to ψ

on all x with ψ|M+Cx = ϕ. To prove the result, set M = {0}.
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(b) Prove that the linear map ι : X → X∗∗ given by

ι(x)(φ) = φ(x) x ∈ X,φ ∈ X∗

is an isometry.

Proof. Fix x ∈ X, so

∥ι(x)∥ =
|ι(x)(ϕ)|
∥ϕ∥X∗

= sup
ϕ∈X∗

|ϕ(x)|
∥ϕ∥X∗

By part (a), there exists ϕ ∈ X∗ such that ∥ϕ∥X∗ = 1 and ϕ(x) = ∥x∥, which implies that

∥x∥ ≤ ∥ι(x)∥X∗ .

Also, for any ϕ ∈ X∗, |ϕ(x)| ≤ ∥ϕ∥X∗∥x∥ and so

∥ι(x)∥ ≤ sup
ϕ∈X∗

|ϕ(x)|
∥ϕ∥X∗

≤ ∥ϕ∥∥x∥
∥ϕ∥

= ∥x∥.

So ∥ι(x)∥ = ∥x∥ and so ι is an isometry.

(c) A Banach space X is called reflexive if ι(X) = X∗∗. Prove that the Banach space

ℓ1 = {f ∈ N → C | ∥f∥1 =
∑
k

|f(k)| <∞}.

is not reflexive.

Hint: Consider a weak-∗ cluster point of the sequence (ι(fn))n∈N ⊆ (ℓ1)∗∗, where fn ∈ ℓ2 is the

unit vector

fn(k) =

{
1/n k ≤ n

0 k > n

Proof. Compare to Exercise 19 in Chapter 6 of Folland.

We have ι(fn) =: ϕn ∈ (ℓ∞)∗ is the map

ϕn(f) = n−1
n∑

j=1

f(j).

Note that

|ϕn| ≤ n−1
n∑
1

|f(j)| ≤ n−1
n∑
1

∥f(j)∥∞ = ∥f(j)∥∞,

so ∥ϕn∥ ≤ 1 for all n ∈ N. So (ϕn) is in the norm-ball of (ℓ∞)∗, which is wk*-compact by

Alaoglu and hence has a cluster point. Define fm ∈ ℓ∞ to be

fm(x) :=

{
0 x < m

1 x ≥ m
.
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Then ϕn(fm) → 1 as n → ∞ for all m. Hence (ϕnk
) is a convergent subsequence in (ϕn) limit-

ing to ϕ ∈ B((ℓ∞)∗), one must have ϕ(fm) = 1 for all m.

Yet if g ∈ ℓ1, then
∑∞

1 fm(j)g(j) =
∑∞

m g(j) can be made arbitrarily close to 0 for m suffi-

ciently large. So there is no g ∈ ℓ1 such that ϕ(f) =
∑
f(j)g(j) for all f ∈ ℓ∞.

Problem 11. Let (gn)n∈N ⊆ C([0, 1]) be a sequence of non-negative continuous functions. Assume

that for each k = 0, 1, 2, . . . the limit

lim
n→∞

∫ 1

0

xkgn(x)dx exists.

Prove that there exists a unique finite positive Radom measure µ on [0, 1] such that

∫ 1

0

f(x)dµ(x) = lim
n→∞

∫ 1

0

f(x)gn(x)dx for all f ∈ C([0, 1]).

Proof. Define M := limn

∫ 1

0
gn(x)dx < ∞. Let A = span{xk | k ∈ N}. For each ϕ ∈ A, by linearity,

limn

∫ 1

0
ϕ(x)gn(x)dx exists.

By Stone-Weierstrass, A is dense in C[0, 1], so for every f ∈ C[0, 1], limn

∫ 1

0
f(x)gn(x)dx.

Next, let ϕ : C[0, 1] → C be defined by ϕ(f) = lim
∫ 1

0
f(x)gn(x)dx. Linearity is obvious. Moreover,

for every f ∈ C[0, 1],

|ϕ(f)| =
∣∣∣∣limn

∫ 1

0

fgn(x)dx

∣∣∣∣ ≤ lim
n

∫ 1

0

|f(x)||gn(x)|dx ≤ ∥f∥n lim
n

∫ 1

0

gn(x)dx =M∥f∥∞

Hence, ϕ is a bounded linear functional on C[0, 1].

By Riesz-Representation, there exists a positive Radon measure µ such that

lim
n

∫ 1

0

f(x)gn(x)dx = ϕ(f) =

∫ 1

0

f(x)dµ(x) ∀f ∈ C[0, 1].

Problem 12. Let X be a locally compact Hausdorff space equipped with a Radon probability mea-

sure µ. Let E ⊆ L2(X,µ) be a closed linear subspace and assume that E is contained in C0(X). The

goal of this problem is to prove that dim(E) <∞ by justifying the following steps:

(a) There exists a constant 1 ≤ K <∞ such that

∥f∥2 ≤ ∥f∥u ≤ K∥f∥2 for all f ∈ E,

where ∥ · ∥u denotes the uniform norm. Hint: us the closed graph theorem for one of the inequal-

ities.
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(b) For each x ∈ X, there exists a unique gx ∈ E such that ∥gx∥2 ≤ K and

f(x) = ⟨f, gx⟩ for all f ∈ E.

(c) Let (fi)i∈I be any orthonormal basis for E. Then

∑
i∈I

|fi(x)|2 = ∥gx∥22 ≤ K2 for all x ∈ X.

(d) dim(E) = |I| ≤ K2.

Proof. See January 2017, Problem #5 for a solution to a similar question.

13 January 2018

Problem 1. Suppose U1, U2, . . . are open subsets of [0, 1]. In each case, either prove the statement

or disprove it.

(a) If λ
(⋂∞

n=1 Un) = 0 then for some n ≥ 1, we have λ(Un) < 1, where λ is Lebesgue measure and

Un is the closure of Un in the usual topology on [0, 1].

Proof. We will disprove this statement. Let Un = Cc
n ∩ [0, 1], where Cn ⊂ [0, 1] is a generalized

Cantor set of measure 1 − 1
n . Then m(

⋂∞
n=1 Un) ≤ m(Un) = 1

n , so m(
⋂∞

n=1 Un) = 0. But Cn

does not contain an open interval for any n, so Un = Cc
n = [0, 1] for all n, which has measure 1.

Another counterexample: Let rm be an enumeration of the rationals on [0, 1], and set an,m =

1/2n+m. Set

Un :=
⋃
m

(rm − an,m, rm + an,m)

These are open since they are a union of open intervals. Moreover, since Q ⊆ Un then λ(Un) =

λ([0, 1]) = 1. But by upper continuity of the Lebesgue measure, then

λ
(⋂

Un

)
= lim

m
λ
(⋃

(rn − an,m, rn + an,m)
)
= 0.

(b) If
⋂∞

n=1 Un = ∅, then for some n ≥ 1, the set [0, 1]\Un contains a non-empty open interval.

Proof. TRUE. Recall that the Baire Category Theorem states that under these assumptions, if

each Un is dense in [0, 1] then
⋂∞

n=1 Un is also dense in [0, 1]. Then since we have that
⋂∞

n=1 Un

is not dense, then there must be some n such that [0, 1]\Un is not dense. This precisely means

that Un contains a non-empty open interval.

Problem 2. Let X be a separable compact metric space and show that C(X) is separable.
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Proof. Remark: If X is a compact metric space, then X is separable. So the separable assumption

is superfluous.

Suppose d is the metric on X and (xn) is a dense countable subset of X. For each n ∈ N, de-
fine the functional fn by fn(x) := d(x, xn). Then each fn is a continuous functional. Consider

F = {1, f1, f2, . . .} and consider the subalgebra generated by the rational span of F , call it Q[F ]

(this is still countable, we can consider the span, then consider the set where two elements of it are

multiplied together, then the set where three elements are multiplied together, etc). This is count-

able and dense in A := R[F ]. so it is sufficient to show that A is dense in C(X).

We will attempt to use the Stone Weierstrass Theorem:

By definition, R[F ] contains the constant function 1. We are left to show it separates points. Take

two points x ̸= y in X. Since {xn} is dense, then there must exist some m such that d(x, xm) ≤
1
3d(x, y) ̸= 0. If d(y, xm) = d(x, xm) then

d(x, y) ≤ d(x, xm) + d(y, xm) = 2d(x, xm) ≤ 2

3
d(x, y).

This cannot be true under our assumption d(x, y) ̸= 0. So then fm(y) = d(y, xm) ̸= d(x, xm) =

fm(x). So fm separates x and y.

Therefore, by Stone-Weierstrass, A is dense in C(X). But Q[F ] is countable and dense in A, so

therefore C(X) is separable.

Problem 3. Let f : [0, 1] → R be a bounded Lebesgue measurable function such that

∫ 1

0

f(t)entdt = 0

for every n ∈ {0, 1, 2, . . .}. Prove that f(t) = 0 for almost every t ∈ [0, 1].

Proof. Using Stone-Weierstrass to show we can pass to the case
∫ 1

0
f(t)g(t) = 0 for all g ∈ C[0, 1]

(this convergence is uniform). But C[0, 1] is dense in L2[0, 1]. So for any g ∈ L2[0, 1], there is some

(gn) ⊂ C[0, 1] such that ⟨·, gn⟩ → ⟨·, g⟩ in (L2)∗. Hence in fact ⟨f, g⟩ = 0 for all g ∈ L2[0, 1], so f = 0

a.e.

Another argument: we use Stone-Weierstrass to see
∫ 1

0
f(t)g(t) = 0 for all g ∈ C[0, 1]. By a stan-

dard density argument, we may pass to the case where g is a step function. We claim that f = 0

a.e.

Assume not. WLOG there exists some E = {x ∈ [0, 1] | f(x) > 0} with m(E) > 0 (else consider

−f).

Since f is bounded, then E∞ := {x ∈ [1, 2] | f(x) = ∞} is a null set. Define En := {x ∈ [0, 1] |
1/n < f(x) < n}. We can write E = (

⋃
nEn)∪E∞. So there exists some N such that m(EN ) = a >

0.

We can write A as a finite disjoint union of open intervals, A = ⊔m
i=1Ii, such that m(EN△A) < ϵ

and A ⊆ EN .
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Put g =
∑m

i=1
χIi , then

∫ 2

1
g(x)f(x) =

∫
EN

f(x)dx. Since

∣∣∣∣∫
EN

f(x)−
∫
A

f(x)

∣∣∣∣ ≤ Nm(EN△A) < Nϵ

If we choose ϵ small enough, we see the contradiction since
∫ 1

0
g(x)f(x) > 0.

Problem 4. (a) Prove that every compact subset of a Hausdorff space is closed.

Proof. Let A be a compact subset of the Hausdorff space X. To show A is closed, we’ll show

Ac = X\A is open. Take x ∈ X\A. Then for every y ∈ A, there are disjoint sets Uy and Vy with

x ∈ Vy and y ∈ Uy.

The collection of open sets {Uy | y ∈ A} forms an open cover of A. Since A is compact, this

open cover has a finite subcover, Uy1
, Uy2

, . . . , Uyn
. Let

U :=

n⋃
i=1

Uyi
V :=

n⋂
i=1

Vyi

Since each Uyi
and Vyi

are disjoint, then U and V are disjoint. Also, A ⊆ U and x ∈ V .

Thus, for every point x ∈ X\A we have found an open set V containing x which is disjoint from

A. So X\A is open and A is closed.

(b) Let f : X → Y be a bijective continuous function between topological spaces. Suppose that X is

compact and Y is Hausdorff and prove that f is a homeomorphism.

Proof. Let g = f−1. We need to show that g is continuous.

For every V ⊆ X, we have g−1(V ) = f(V ). We want to show that if V is closed in X then

g−1(V ) is closed in Y .

Suppose V is closed in X. Since X is compact, V is compact by part (a). So f(V ) is compact

since the continuous image of a compact space is compact.

Since Y is Hausdorff, f(V ) is closed by the fact that a compact subspace of Hausdorff space is

closed. But f(V ) = g−1(V ) so g−1(V ) is closed. So g is continuous and f is a homeomorphism.

(c) Prove or disprove that if X is a dense subset of a topological space Y and if X is Hausdorff in

the relative topology, then Y is also Hausdorff.

Proof. FALSE. Consider Y = {a, b} with discrete topology τ = {∅, {a, b}}. Let X = {a} with

relative topology τX = {∅, {a}}.

Then it’s easy to see X is dense in Y (since every open set containing an element of Y has nonempty

intersection with X, trivially). Since X has only a single element, it’s Hausdorff in the relative

topology trivially. But Y is not Hausdorff.

60



13 JANUARY 2018 Texas A&M

Problem 5. Prove that the following limit exists and compute its value:

lim
n→∞

∫ n

0

(
n∑

k=0

(−1)kx2k

(2k)!

)
e−2xdx.

Proof. Let us first note an important simplification of the integrand, by considering the Taylor se-

ries expansion of cosx around a neighbourhood of 0.

cosx =

∞∑
k=0

(−1)k

(2k)!
x2k

We now make the following calculation:∫ ∞

0

x2k

(2k)!
e−2x dx =

1

2

(
1

4

)k

.

This can be done using integration by parts. Note all terms from this method are of the form Cxie−2x

for 0 ≤ i < 2k and for some constant C. Since limx→∞ xie−2x = 0 for all i we have Cxie−2x|∞0 =

0 − 0 = 0 for all 0 < i < 2k. Hence we only need to find the constant belonging to the e−2x term.

Integration by parts gives

C =
(2k)!

2 · (−2)2k
=

(2k)!

2 · 4k
,

yielding our result. Hence,

∞∑
k=0

∫ ∞

0

∣∣∣∣ (−1)kx2k

(2k)!
e−2x

∣∣∣∣ dx =

∞∑
k=0

∫ ∞

0

x2k

(2k)!
e−2x dx =

1

2

∞∑
k=0

(
1

4

)k

<∞.

We note (by MCT) that
∑∞

i=0
x2k

(2k)!e
−2x ∈ L1 is a dominating function for all limiting functions, so

lim
n→∞

∫ n

0

(
n∑

k=0

(−1)kx2k

(2k)!

)
e−2x dx

DCT
=

∫ ∞

0

lim
n→∞

(
n∑

k=0

(−1)kx2k

(2k)!

)
e−2x dx =

∫ ∞

0

(cosx)e−2x.

This latter integral is once again solved by integration by parts to yield the value 2/5.

Problem 6. Let X and Y be Banach spaces (over C)

(a) A linear map T : X → Y is called adjointable if T ∗f ∈ X∗ for every f ∈ Y ∗. Prove that T is

adjointable if and only if T ∈ B(X,Y ).

Proof. ⇐) if T ∈ B(X,Y ) then by definition, for every f ∈ Y ∗, we have T ∗f ∈ X∗

⇒) Suppose T ∗f ∈ X∗ for every f ∈ Y ∗. We will use the Closed Graph Theorem. Suppose

xn → x in X and that Txn → y in Y . Then since T ∗f ∈ X∗ for every f ∈ Y ∗ we can apply this

to the convergence to see that
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f(Txn) = (T ∗f)(xn) → (T ∗f)(x) = f(Tx) ∀f ∈ Y ∗

By the Hahn-Banach theorem, Y ∗ separates points in Y so therefore, Txn → Tx. Uniqueness

of limits implies Tx = y and so the graph of T is closed. By the Closed Graph Theorem, T is

bounded.

(b) Suppose a bounded linear functional ψ : X∗ → C is weak*- continuous. Show (from the defini-

tions) that there exists x ∈ X such that ψ(ϕ) = ϕ(x).

Proof. Define the functional

evx : X∗ → C
f 7→ f(x)

We want to show that every bounded, linear, weak*-continuous functional ψ : X∗ → C is of this

form.

Indeed, since ψ is weak*-continuous, then it is weak* continuous at 0. Thus, the set {f ∈ X∗ |
|ψ(f)| < 1} is weak* open and must contain a neighborhood of 0. By definition of weak* topol-

ogy, there must exist x1, . . . , xn ∈ X such that

V (x1, . . . , xn) := {f ∈ X∗ | |f(xi)| ≤ 1, i = 1, . . . , n} ⊆ {f ∈ X∗ | |ψ(f)| < 1}.

Then we will next show that
⋂n

i=1 ker(evxi
) ⊆ ker(ψ).

Indeed, let f ∈ ker(evxi
) so |f(xi)| = 0 for all i = 1, . . . , n. Take ϵ > 0 and consider g = 1

ϵ f , so

|g(xi)| = 1
ϵ |f(xi)| = 0 for all i = 1, . . . , n. In particular, g ∈ V (x1, . . . , xn) and so then we have

if |ψ(g)| < 1 then |ψ(f)| < ϵ. But ϵ is arbitrary so ψ(f) = 0, i.e. f ∈ ker(ψ).

Now recall the linear algebra trick that says if for linear functionals ker(T ) ⊆ ker(S) then S is a

scalar multiple of T . In this case, we get that ψ is a linear combination of the evxi
, i.e. is of the

form evx where x is a linear combination of the xi’s. If ψ =
∑n

1 αi evxi , then x :=
∑n

1 αixi is

the desired element.

Moreover, because the weak* topology is Hausdorff, x is necessarily unique.

(c) Let S ∈ B(Y ∗, X∗). Prove that S is weak*-weak*-continuous if and only if S = T ∗ for some

T ∈ B(X,Y ).

Proof. ⇐) If S = T ∗ then if fα → f is a weak* convergent net in Y ∗ then for any y ∈ Y ,

fα(y) → f(y). Therefore,

(Sfα − Sf)︸ ︷︷ ︸
∈X∗

(x) = (Tx) (fα − f)︸ ︷︷ ︸
→0

→ 0.

So S is weak*-weak* continuous.

⇒) Suppose S : Y ∗ → X∗ is weak*-weak* continuous. Then the evaluation function on x,

evx(S) is weak* continuous on Y ∗ (where evx(S) : Y
∗ → C, (evx(S))(f) = (Sf)(x)).

62



13 JANUARY 2018 Texas A&M

By part (b), we know that evx(S) is of the form evT (x) for some unique T (x) ∈ Y . Since T (x) is

uniquely determined, it follows that T is linear.

We will now check that T is continuous by the closed graph theorem: if xn → x adn Txn → y

in norm then for each ϕ ∈ Y ∗ we have

⟨ϕ, y⟩ = lim⟨ϕ, Txn⟩ = lim⟨Sϕ, xn⟩ = ⟨Sϕ, x⟩ = ⟨ϕ, Tx⟩.

And so y = Tx as desired. So T is bounded and therefore, S = T ∗ is bounded as well.

Problem 7. Let (fn)
∞
n=1 be a sequence of functions fn : [0, 1] → R.

(a) What does it mean for {fn | n ≥ 1} to be equicontinuous?

Proof. {fn | n ≥ 1} is said to be equicontinuous if for every ϵ > 0, there exists a δ > 0 such that

for all x, y ∈ [0, 1], if |x− y| < δ then |f(x)− f(y)| < ϵ.

(b) Suppose that for every n, fn is differentiable and |f ′n(t)| ≤ 1 for all t. Prove that {fn | n ≥ 1} is

equicontinuous.

Proof. Since |f ′n(t)| ≤ 1 for all t, then for all n, we have by the mean value theorem that

|fn(x)− fn(y)|
|x− y|

≤ 1.

Hence, for any fixed ϵ > 0, setting δ = ϵ and for |x− y| < δ then

|fn(x)− fn(y)| ≤ |x− y| < δ = ϵ.

(c) Suppose the hypothesis of (b) holds and assume in addition that |fn(0)| ≤ 1 for every n ≥ 1.

Prove that there exists a continuous function f : [0, 1] → R and a subsequence (fn(k))
∞
k=1 con-

verging uniformly to f .

Proof. This is essentially the Arzela-Ascoli Theorem. Since |fn(0)| ≤ 1 for all n and since

|f ′n(t)| ≤ 1 for all t, then |fn(t)| ≤ 2 for all t ∈ [0, 1] and for all n. That is, {fn} is uniformly

bounded. It’s also equicontinuous by part (b). Therefore, Arzela-Ascoli theorem states that

there is a subsequence {fnk
} which converges uniformly. Let f be the limit, and we finish by

recalling that the uniform convergence of continuous functions is also continuous.

Note: it might be good to know the Arzela-Ascoli Theorem.

(d) Show by example that the limit function f need not be differentiable.

Proof. Take fn(x) =
√
x2 + 1/n so fn(0) =

1√
n
≤ 1 for all n and so {fn} is uniformly bounded.

Next, we can see that f ′n(x) = x√
x2+1/n

so that for x ∈ [0, 1] we have |f ′n(x)| ≤
√

n
n+1 ≤ 1 as

desired.

However, it’s also clear that the limit must be f = |x| which is not differentiable.
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Problem 8. Let H be a complex Hilbert space. Given a non-empty set E ⊆ H and x ∈ H, put

dist(x,E) = inf{∥x− y∥ | y ∈ E} and E⊥ = {x ∈ H | ⟨x, y⟩ = 0 ∀y ∈ E}.

(a) Let H0 ⊆ H be a closed subspace and x ∈ H. Prove that there exists x0 ∈ H0 such that ∥x −
x0∥ = dist(x,H0).

Proof. Let δ = dist(x,H0). Then there exists a sequence (yn) ∈ H0 such that δn := ∥x − yn∥ →
δ. We will show that (yn) is Cauchy. Indeed,

0 ≤ ∥yn − ym∥2 = −∥yn + ym − 2x∥2 + 2(∥yn − x∥2 + ∥ym − x∥2) ≤ −4δ2 + 2(δ2n + δ2m) → 0.

where we use the fact that

∥yn + ym − 2x∥2 = 4

∥∥∥∥∥∥∥∥
yn + ym

2︸ ︷︷ ︸
∈H0

−x

∥∥∥∥∥∥∥∥
2

≤ 4δ.

Thus, (yn) is a Cauchy sequence and so because we are in a Hilbert space, (yn) converges to

some point x0 ∈ H. Since H0 is closed and yn ∈ H0 for all n then we get that x0 ∈ H0. Finally,

∥x− x0∥ = lim ∥x− yn∥ = lim δn = δ.

Exercise: it can be shown if H0 is convex, then the choice of x0 is unique!

(b) With x and x0 as above, prove that x− x0 is orthogonal to H0.

Proof. Let y ∈ H0 be an arbitrary vector with ∥y∥ = 1, set α := ⟨x − x0, y⟩. Then since α⟨x −
x0, y⟩ = αα = |α|2 and α⟨y, x− x0⟩ = αα = |α|2, we have

∥x−(x0+αy)∥2 = ∥x−x0−αy∥2 = ∥x−x0∥2−α⟨x−x0, y⟩−α⟨y, x−x0⟩+ |α|2 = ∥x−x0∥2−|α|2.

So since x0 + αy ∈ H0 then ∥x− x0 − αy∥ ≥ ∥x− x0∥. Hence α = 0.

Therefore, for any nonzero y ∈ H0 we can write

⟨x− x0, y⟩ = ∥y∥⟨x− x0, y/∥y∥⟩ = ∥y∥0 = 0.

So ⟨x− x0, y⟩ = 0 for all y ∈ H0 so x− x0 ⊥ H0.

(c) Prove that H = H0 ⊕H⊥
0 (the algebraic direct sum)

Proof. This follows immediately from parts (a) and (b). Take some arbitrary x ∈ H. We can

find the appropriate x0 as above, so x = x0 + (x− x0) ∈ H0 ⊕H⊥
0 .

The fact that it is a direct sum follows from the fact that H0 ∩H⊥
0 = {0}.

(d) Let E ⊆ H be non-empty. Prove that (E⊥)⊥ = E if and only if E is a closed subspace.
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Proof. If E is closed, then the above parts (a),(b), and (c) apply and prove that (Eperp)⊥ =

E. To see the converse, we will instead show that (E⊥)⊥ = E. The desired result will then

immediately follow.

Since E ⊆ E then E
⊥ ⊆ E⊥ and therefore, (E⊥)⊥ ⊆ (E

⊥
)⊥. Since E is closed, then (E

⊥
)⊥ =

E so (E⊥)⊥ ⊆ E.

Conversely, since E⊥ is closed for every E (independent of whether E is closed or not) then

(E⊥)⊥ is closed and so since E ⊆ (E⊥)⊥, then by the monotonicity of topological closure we

have that E ⊆ (E⊥)⊥ = (E⊥)⊥.

Therefore, (E⊥)⊥ = E.

Problem 9. Let V be a vector space over R or C. Recall that a Hamel basis for V is a linearly in-

dependent subset of V whose linear span equals V .

(a) Let S ⊆ V and suppose the linear span of S equals V . Show that V has a Hamel basis that is a

subset of S.

Proof. Let C be the collection of linearly independent sets in S. This is non-empty since S is

non-empty. A standard Zorn’s lemma argument shows that chains have upper bounds in the

space, so there is some maximal element B in C. We claim the span of B is V . If there is some

v not in the span of B, then since the span of S is V there must be some s not in the span of B

either. So B ∪ {s} is linearly independent, contradicting maximality of B.

(b) Suppose V has an infinite Hamel basis and show that all hamel bases of V have the same cardi-

nality.

Proof. Suppose that {vi}i∈I and {uj}j∈J are two infinite bases for V . For each i ∈ I, then vi is

in the linear span of {uj}j∈J . Therefore, there exists a finite subset Ji ⊆ J such that vi is in the

linear span of the vectors {uj}j∈Ji . Therefore, V = span({vi}i∈I) ⊆ span{uj}j∈⋃
Ji
. Since no

proper subset of {uj}j∈J can span V , it follows that J =
⋃

i∈I Ji. Therefore |J | ≤ |I|.
A symmetric argument shows that |I| ≤ |J |.

Problem 10. Suppose (X,M, ρ) is a finite measure space and A ⊆ M is an algebra of sets with a

finitely additive complex measure µ : A → C such that |µ(E)| ≤ ρ(E) for all E ∈ A. Show that there

exists a complex measure ν : M → C whose restriction to A is µ and such that |ν(E)| ≤ ρ(E) for all

E ∈ M.

Hint: you may want to consider the subspace V ⊆ L1(ρ) that is spanned by the set of characteristic

functions χE for E ∈ A, and a certain linear functional on V .

Proof. Solution from Minh Kha.

For each subalgebra U of M, we define SU to be the set of all simple functions of the form
∑n

i=1 ciχEi

where ci ∈ R, Ei ∈ U . Then SA is a vector subspace of SM.

Now define p : SM → R such that

p(f) = sup

{
n∑

i=1

|ci|ρ(Ei) | f =

n∑
i=1

ciχEi , Ei ∩ Ej = ∅ ∀i ̸= j, Ei ∈ M, ci ∈ R

}
∀f ∈ SM
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It’s not difficult to check that p satisfies p(f + g) ≤ p(f) + p(g) for all f, g ∈ SM and p(tf) = tp(f)

for all t ∈ R+, f ∈ SM. Thus, p is a seminorm and is just an extension of the total variation of the

measure p when you apply to the function f = 1.

Define a linear map T : SA → R defined by

T (f) =

∫
X

fdµ ∀f ∈ SA

This is linear because of the finite additive property of µ. Then |T (f)| ≤ p(f) for all f ∈ SA. By

Hahn-Banach, we get a linear extension of T on SM, which we denote by T̃ . Moreover, this exten-

sion T̃ : SM → R satisfies |T̃ (f)| ≤ p(f) for all f ∈ SM.

Now, we define a finite additive measure ν on M by letting ν(E) = T̃ (χE) for all E ∈ M. Thus,

ν|A = µ and |ν(E)| ≤ p(E) for all E ∈ M.

To check the countably additive property of ν, consider any countable collection of disjoint measur-

able subsets Ei ∈ M and so χ⋃
i Ei

=
∑

i
χEi

. Thus, ν(
⋃

iEi) =
∑

i ν(Ei) since the series
∑

i T̃ (Ei)

converges (use |T̃ (f)| ≤ p(f) for all f ∈ SM and properties of the measure p).

For the complex case, repeat the trick by proving the complex version of the Hahn-Banach theorem

from the real version.

14 August 2017

Problem 1. Let (Ω,A, µ) be a measure space and let {fn} be a sequence of measurable functions

on X. Prove, directly from the definition of convergence almost everywhere, that if
∑

n µ[|fn| >
1/n] < ∞, then the sequence {fn} converges almost everywhere to zero. Deduce that every sequence

of measurable functions that converges in measure to zero has a subsequence that converges almost

everywhere to zero.

Proof. Let E = {x ∈ Ω | limn |fn(x)| = 0}. We want µ(Ec) = 0. Let

M =

∞⋂
m=1

∞⋃
n=m

{x ∈ Ω | |fn(x)| > 1/n}

Since

µ

( ∞⋃
n=m

{
x ∈ Ω | |fn(x)| >

1

n

})
≤

∞∑
n=m

µ

({
x ∈ Ω | |fn(x)| >

1

n

})
→ 0.

Therefore, µ(M) = 0 and

M c =

∞⋃
m=1

∞⋂
n=m

{x ∈ Ω | |fn(x)| ≤ 1/n}.
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Note: fn(x) → 0 if and only if ∀ϵ > 0, ∃N s.t. ∀n > N , |fn(x)| < ϵ.

So for any x ∈M c choose 1/N < ϵ s.t. ∀n > N we have |fn(x)| ≤ 1
n <

1
N < ϵ.

Therefore M c ⊆ E, so Ec ⊆ M , implying µ(Ec) = 0. So then {fn} converges almost everywhere to

zero.

Step 2: We will show that if fn → 0 in measure, then there exists a subsequence that converges to 0

pointwise almost everywhere.

Suppose for every ϵ > 0, µ({x | |fn(x)| ≥ ϵ}) → 0. Choose a subsequence {fnk
} such that if

Ej = {x | |fnj
(x)− fnj+1

(x)| > 2−j}

satisfies µ(Ej) < 2−j . Let Fk =
⋃∞

j=k Ej so µ(Fk) ≤
∑∞

j=k 2
−j ≤ 21−k. Let F =

⋂
k Fk so µ(F ) = 0.

For x /∈ Fk and for i ≥ j ≥ k then

|fni
(x)− fnj

(x)| ≤
i−1∑
ℓ=j

|fnℓ
(x)− fnℓ+1

(x)| ≤
i−1∑
ℓ=j

2ℓ ≤ 2−j → 0 as k → ∞.

So fnk
is pointwise Cauchy on x /∈ F , so let

f(x) =

{
lim fnk

(x) x /∈ F

0 otherwise

So fnk
→ 0 almost everywhere and fn → f in measure since

µ({x | |fn(x)− f(x)| ≥ ϵ}) ≤ µ({x | |fn(x)− fnℓ
(x)| ≥ ϵ/2})︸ ︷︷ ︸

→0

+µ({x | |fnℓ
(x)− f(x)| ≥ ϵ})︸ ︷︷ ︸

→0

and

µ({x | |f(x)| ≥ ϵ}) ≤ µ({x | |f(x)− fn(x)| ≥ ϵ/2}︸ ︷︷ ︸
→0

+µ({x | |fn(x)| ≥ ϵ/2})︸ ︷︷ ︸
→0

so f = 0 almost everywhere. Thus, {fnk
} converges to 0 almost everywhere.

Problem 2. Show that there is a sequence of nonnegative functions {fn} in L1(R) such that ∥fn∥L1(R) →
0, but for any x ∈ R, lim supn fn(x) = ∞.

Proof. We will explicitely construct such a sequence. Consider the following pattern:

To cover [−1, 1] let
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f1 =
√
1χ[−1,0], f2 =

√
1χ[0,1].

so that ∥f1∥L1(R) = 1 = ∥f2∥L1(R). To cover [−2, 2], next let

f3 =
√
2χ[−2,−1.5], f4 =

√
2χ[−1.5−1] . . . , f10 =

√
2χ[1.5,2]

so then 1√
2
= ∥f3∥L1(R) = ∥f4∥L1(R) = . . . = ∥f10∥L1(R). Next, we cover [−3, 3] so that

f11 =
√
3χ[−3,−2.666], . . . f28 =

√
3χ[2.666,3]

so that 1√
3

= ∥f11∥L1(R) = . . . = ∥f28∥L1(R). If we continue in this fashion, we get the desired

functions.

Explicitely, for n =
∑N−1

i=1 2i2 + k = 1
3 (N − 1)(N)(2N − 1) + k where N ∈ N, 0 ≤ k < 2N2, then we

set

fn =
√
Nχ[−N+k/N,−N+(k+1)/N ]

so that ∥fn∥L1(R) =
1√
N

but for every x ∈ R, it’s clear that lim supn fn(x) = ∞.

Problem 3. Construct a sequence of nonnegative Lebesgue measurable functions {fn} on [0, 1] such

that

(a) fn → 0 almost everywhere, and

(b) for any interval [a, b] ⊆ [0, 1],

lim
n→∞

∫ b

a

fn(x)dx = b− a.

Proof. We will prove a result in greater generality: there exists a sequence (fn) that converges to 0

a.e. such that
∫
fnf →

∫
f . After proving this statement we will explain how to adapt this argu-

ment to take a shorter amount of time for the qual. Before beginning, we recall “little-o” notation:

we say a sequence an = o(f(n)) if limn
an

f(n) = 0.

Claim. For any f ≥ 0 that is continuous on [0, 1], |n
∫
[x,x+ 1

n2 ]
(f(y)− f(x))dy| = o( 1n ).

For any ϵ > 0, ∃N ∈ N such that 0 < δ < 1
N then |f(x + δ) − f(x)| < ε for all x ∈ [0, 1]. Hence for

n > N , n
∫
[x,x+ 1

n2 ]
|f(y)− f(x)| dy < nϵ 1

n2 = o( 1n ), proving the claim.

By the exact same method as taken in the claim, |
∫
[x,x+ 1

n ]
(f(y) − f(x)) dy| = o( 1n ) as well. We will

use both in what is to come.

Let fn(x) :=
∑n−1

k=0 nχ[ kn , kn+ 1
n2 ], and let ε,N be as above. Clearly fn is measurable and satisfies (a)

above. To prove (b), observe that, for n > N ,
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Ik :=

∣∣∣∣∣
∫ k+1

n

k
n

[
nfχ[ kn , kn+ 1

n2 ] − f
]∣∣∣∣∣

=

∣∣∣∣∣n
∫ k

n+ 1
n2

k
n

f −
∫ k+1

n

k
n

f

∣∣∣∣∣
=

∣∣∣∣∣n
∫ k

n+ 1
n2

k
n

f(y)− f

(
k

n

)
dy −

∫ k+1
n

k
n

f(y)− f

(
k

n

)
dy

∣∣∣∣∣
= o

(
1

n

)
.

Hence |
∫
(ffn − f)| ≤

∑n−1
k=0 Ik = o(1).

This holds for all f ≥ 0 which is continuous, so in particular, it will hold for f = χ[a,b].

Shorter proof: Taking the same sequence and the same Ik as above, note that for each n, there are

at most two values of k for which Ik is non-zero (namely, those whose intervals of integration which

intersect with the endpoints a and b). It is easy to see that |Ik| ≤ 2
n for all k by its definition and

a quick triangle inequality, and this completes the proof. Note we did not use the claim, the state-

ment following it, or the lengthy calculation following the definition of Ik for this argument. (We

needed slightly stricter bounds for Ik in the continuous case, which is where most of the work above

comes from.)

Problem 4. In this problem the measure is Lebesgue measure on [0, 1]. The norm on L∞[0, 1] is

the essential supremum norm, which for a continuous function is the same as the supremum norm.

(a) Prove or disprove that L∞[0, 1] is separable in the norm topology.

Proof. L∞[0, 1] is not separable in the norm topology. Consider the collection of functions fr =
χ[−r,r] for real 1 ≥ r > 0. Since there are uncountably many such r and since ∥fr − fr′∥∞ = 1

for any r ̸= r′, it’s impossible to have a countable subset of L∞[0, 1] that is dense in it.

(b) Recall that L∞[0, 1] = (L1[0, 1])∗. What is the weak* closure in L∞[0, 1] of the unit ball of

C[0, 1]? Prove your assertion.

Proof. We anticipate that the largest this weak* closure could be is the unit ball of L∞[0, 1]; we

will prove this is the case.

First, since B(C[0, 1]) ⊂ B(L∞[0, 1]),

B(C[0, 1])w∗ ⊂ B(L∞[0, 1])w∗ Alaoglu
= B(L∞[0, 1]).

Claim: B(C[0, 1]) is weak*-dense in B(L∞[0, 1]).

This is guaranteed by Lusin’s theorem. Let f ∈ L∞[0, 1] with ∥f∥∞ ≤ 1. Let (fn) ⊂ C[0, 1] be

such that ∥fn∥∞ ≤ ∥f∥∞ and fn = f except on a set An such that µ(An) <
1
n . For g ∈ L1
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and ε > 0, there is some N ∈ N such that
∫
|g| < ε whenever µ(N) < 1

N (see Corollary 3.6 of

Folland). So ∫
|f − fN ||g| =

∫
Ac

N

|f − fN ||g|+
∫
AN

|f − fN ||g| < 2∥f∥∞ε.

This means B(L∞[0, 1]) is contained in the weak*-closure of B(C[0, 1]), completing the claim.

Problem 5. Prove that if a1, a2, . . . , aN are complex numbers, then

(a)
∫ 1

0
|
∑N

k=1 ak exp(2πikt)|pdt ≤
∑N

k=1 |ak|p, if 1 ≤ p ≤ 2, and

(b)
∫ 1

0
|
∑N

k=1 ak exp(2πikt)|pdt ≥
∑N

k=1 |ak|p, if 2 ≤ p <∞.

Proof. Note first the following facts:

• {exp(2πikt)} is orthonormal in L2

• For a finite measure space and p ≤ q, then

∥f∥p ≤ µ(X)1/p−1/q∥f∥q

• For a discrete X and p ≤ q, ∥f∥q ≤ ∥f∥p.

Since {exp(wπikt)} is orthonormal, then

∥∥∥∥∥
N∑

k=1

ak exp(2πikt)

∥∥∥∥∥
2

2

=

N∑
k=1

|ak|2.

Then if we let a = (a1, . . . , aN ) and f =
∑N

k=1 ak exp(2πikt), we see that for 1 ≤ p ≤ 2, we have

∫ 1

0

∣∣∣∣∣
N∑

k=1

ak exp(2πikt)

∣∣∣∣∣
p

dt = ∥f∥pp ≤ ∥f∥p2 = ∥a∥p2 ≤ ∥a∥pp.

To see (b), then similarly for 2 ≤ p <∞,

∫ 1

)

∣∣∣∣∣
N∑

k=1

ak exp(2πikt)

∣∣∣∣∣
p

dt = ∥f∥pp ≥ ∥f∥p2 = ∥a∥p2 ≥ ∥a∥pp.

Problem 6. Prove that if X is an infinite dimensional Banach space and X∗ is separable in the

norm topology, then there is a sequence {xn} of norm one vectors in X such that {xn} converges

weakly to zero.
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Proof. Suppose {x∗n} is a dense, countable subset of X∗.

Claim: For every n, then
⋂n

k=1 ker(x
∗
k) is non-trivial.

Indeed, assume to the contrary that
⋂n

k=1 ker(x
∗
k) = {0}. Then the map

F : X → Fn

x 7→ (x∗1(x), . . . , x
∗
n(x))

is linear and injective. Let {e1, . . . , em} be a basis for F (X). Choose yk ∈ F−1({ek}). For all x ∈
X, we can write F (x) =

∑m
i=1 aiei. so F (x−

∑
aiyi) =

∑
aiei −

∑
aiei = 0 so x is in the span and

then X must be finite dimensional, contradiction! So the claim holds.

Now, choose xn ∈ SX ∩ (
⋂n

k=1 ker(xk)). Fix x
∗ ∈ X∗, ϵ > 0, so ∃N ∈ N such that ∥x∗ − x∗N∥ < ϵ.

Then for all n ≥ N , xn ∈ ker(x∗N ) so

|x∗(xn)| = |(x∗ − x∗n)(xn)| ≤ ∥x∗ − x∗N∥ < ϵ

So then x∗(xn) → 0.

Problem 7. Prove or disprove each of the following statements.

(a) If {fn} is a sequence in C[0, 1] that converges weakly, then also {f2n} converges weakly.

Proof. YES. Recall that fn ∈ C[0, 1] converges weakly if and only if it converges pointwise and

is uniformly bounded.

Suppose fn → f weakly, let M := supn ∥fn∥ <∞. Then fn → f pointwise so f2n → f2 pointwise

and supn ∥f2n∥ =M2 <∞. So f2n → f2 weakly.

(b) If {fn} is a sequence in L2[0, 1] that converges weakly, then also {f2n} converges weakly. (Lebesgue

measure on [0, 1])

Proof. NO. Take fn(x) = x−1/3χ[1/n,1](x), so fn → f = x−1/3 in norm but f2n(x) = x−2/3χ[1/n,1](x)

but

∫ 1

0

f2n(x)x
−1/3dx =

∫ 1

0

x−1χ[1/n,1] = log(n) → ∞.

Problem 8. Let {fn} be a sequence of continuous functions on R that converges pointwise to a real

valued function f . Prove that for each a < b, the function f is continuous at some point of [a, b].

Hint: Let En,m,k = [|fn − fm| ≤ 1/k].

Proof. Fix some [a, b] ⊆ [0, 1]. By Egoroff’s Theorem, fn → f uniformly outside a set of measure
b−a
2 . Then f must be continuous outside of this set.
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Note: Likely, the question was meant to prove Egoroff’s theorem, see Folland for that proof!

Problem 9. Let X and Y be compact Hausdorff spaces and let S be the set of all real functions on

X × Y of the form h(x, y) = f(x)g(y) with f in C(X) and g in C(Y ).

Prove or disprove that the linear span of S is dense in C(X × Y ).

Proof. We will use Stone-Weirstrass theorem here. Note that if h1(x, y) = f1(x)g1(y) and h2(x, y) =

f2(x)g2(y) are two functions in S, then

(h1h2)(x, y) = h1(x, y)h2(x, y) = f1(x)g1(y)f2(x)g2(y) = (f1f2)(x)(g1g2)(y)

where if f1, f2 ∈ C(X) then so is f1f2 (and similarly, g1g2 ∈ C(Y )). So then S is an algebra. Thus,

it follows that span(S) is an algebra as well.

Next, S separates points. Indeed, suppose (x, y) ̸= (x′, y′) in X × Y . If x ̸= x′ then choose some

f ∈ C(X) that separates x and x′. Take g ∈ C(Y ) to be the constant function g = 1. Then letting

h(x, y) := f(x)g(y) = f(x), h separates the two points. If x = x′ then y ̸= y′ so the same trick

works, setting f = 1 ∈ C(X) and choosing g to separate y and y′, letting h(x, y) := f(x)g(y) = g(y)

to then separate points.

Therefore, by the Stone-Weierstass theorem, span(S) is dense in C(X × Y ).

Problem 10. Let X be a Hilbert space and assume that {xn} is a sequence in X that converges

weakly to zero. Prove that there is a subsequence {yk} of {xn} such that the sequence ∥N−1
∑N

k=1 yk∥
converges to zero.

Caution: the same statement is NOT true in all Banach spaces, not even in all reflexive Banach

spaces.

Proof. Note: This is the Banach-Saks Theorem

We shall successively choose the nk in the following manner. Beginning for definiteness with n1 = 1,

let n2 be the first index such that |⟨f1, fn⟩| ≤ 1 (this choice is possible since ⟨f1, fn⟩ → 0 as n →
∞). In general, after having chosen fn1

, fn2
, . . . , fnk

, we choose nk+1 so that

|⟨fn1 , fnk+1
⟩| ≤ 1

k
, . . . , |⟨fnk

, fnk+1
⟩| ≤ 1

k

Since {fn} converges weakly, then it is bounded and so ∥fn∥ forms a bounded sequence, say ∥fn∥ ≤
M so by expanding the inner product, we get

∥∥∥∥fn1
+ fn2

+ . . .+ fnk

k

∥∥∥∥2 ≤
kM2 + 2× 1 + 4× 1

2 + . . .+ 2(k − 1)× 1
k−1

k2
<
M2 + 2

k

which then implies
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∥∥∥∥fn1
+ fn2

+ . . .+ fnk

k

∥∥∥∥2 → 0.

Problem 11. Let F ⊆ C([0, 1]) be a family of continuous functions such that

(a) the derivative f ′(t) exists for all t ∈ (0, 1) and f ∈ F .

(b) supf∈F |f(0)| <∞ and supf∈F supt∈(0,1) |f ′(t)| <∞.

Prove that F is precompact in the Banach space C([0, 1]) equipped with the norm ∥f∥ = supt∈[0,1] |f(t)|.

Proof. We will use the Arzela-Ascoli Theorem.

To see F is equicontinuous, fix some ϵ > 0, and let δ = ϵ
M where M = supf∈F supt∈(0,1) |f ′(t)| < ∞.

Then by the mean value theorem, for any a < b, there exists some c ∈ (a, b) such that f ′(c) =
f(b)−f(a)

b−a so that |f(b)− f(a)| ≤ |f ′(c)||b− a| ≤M |b− a| < Mδ = ϵ.

To see F is pointwise bounded, we see that for any b ∈ [0, 1], then for some c ∈ [0, b], we have f(b) =

f ′(c)b+ f(0), so that

|f(b)| ≤M + sup
f∈F

|f(0)|.

That is, F is uniformly bounded!

Then by Arzela-Ascoli, F is compact.

Problem 12. Let {xn} be a weakly Cauchy sequence in a normed linear space X. Prove that

(a) xn is norm bounded in X

Proof. Let c denote the space of convergent sequences, and consider the map

T : X∗ → c

x∗ 7→ (x∗(xn))

Note x̂n(x
∗) = x∗(xn) is convergent for all x

∗ ∈ X∗, so supn |x̂n(x∗)| < ∞ for all x∗. By Uni-

form Boundedness, supn∥x̂n∥ = supn∥xn∥ <∞.

(b) There exists x∗∗ in X∗∗ such that xn converges weak* to x∗∗, and ∥x∗∗∥ ≤ lim inf ∥xn∥.

Proof. Since (xn) is weakly Cauchy, then for every x∗ ∈ X∗ the sequence (x∗(xn)) is Cauchy,

hence convergent. We can define
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x∗∗ : X∗∗ → C
x∗ 7→ lim

n
x∗(xn)

Uniform boundedness shows that ∥xn∥ is bounded, hence x∗∗ is bounded. Finally,

|x∗∗(x∗)| = lim inf |x∗(xn)| ≤ lim inf ∥x∗∥∥xn∥ =
(
lim inf ∥xn∥

)(
∥x∗∥

)
.

So then ∥x∗∗∥ ≤ lim inf ∥xn∥.

15 January 2017

Problem 1. Let (Ω,A, µ) be a measure space. Prove directly from the definition of convergence

almost everywhere that if for all n, µ
({
x ∈ Ω | |fn(x)| > 1

n

})
< n−3/2, then fn → 0 µ-a.e.

Proof. Let E = {x ∈ Ω | limn |fn(x)| = 0}. We want µ(Ec) = 0. Let

M =

∞⋂
m=1

∞⋃
n=m

{x ∈ Ω | |fn(x)| > 1/n}

Since

µ

( ∞⋃
n=m

{x ∈ Ω | |fn(x)| >
1

n
}

)
≤

∞∑
n=m

µ

({
x ∈ Ω | |fn(x)| >

1

n

})
<

∞∑
n=m

n−3/2 → 0.

Therefore, µ(M) = 0 and

M c =

∞⋃
m=1

∞⋂
n=m

{x ∈ Ω | |fn(x)| ≤ 1/n}.

Note: fn(x) → 0 if and only if ∀ϵ > 0, ∃N s.t. ∀n > N , |fn(x)| < ϵ.

So for any x ∈M c choose 1/N < ϵ s.t. ∀n > N we have |fn(x)| ≤ 1
n <

1
N < ϵ.

Therefore M c ⊆ E, so Ec ⊆M , implying µ(Ec) = 0.

Problem 2. Find all f in L1(1, 2) such that for every natural number n we have
∫ 2

1
x2nf(x)dx = 0.

Give reasons for all assertions you make.

Proof. Let f(x) = 0 on x = 1, 2. We now consider f ∈ L1[1, 2]. Using Stone-Weierstrass to show we

can pass to the case
∫ 2

1
g(x)f(x) = 0 for all g ∈ C[1, 2].

74



15 JANUARY 2017 Texas A&M

By a standard density argument, we may pass to the case where g is a step function. We claim that

f = 0 a.e.

Assume not. WLOG there exists some E = {x ∈ [1, 2] | f(x) > 0} with m(E) > 0 (else consider

−f).

Since f ∈ L1[1, 2] then E∞ := {x ∈ [1, 2] | f(x) = ∞} is a null set. Define En := {x ∈ [1, 2] | 1/n <
f(x) < n}. We can write E = (

⋃
nEn) ∪ E∞. So there exists some N such that m(EN ) = a > 0.

We can write A as a finite disjoint union of open intervals, A = ⊔m
i=1Ii, such that m(EN△A) < ϵ

and A ⊆ EN .

Put g =
∑m

i=1
χIi , then

∫ 2

1
g(x)f(x) =

∫
EN

f(x)dx. Since

∣∣∣∣∫
EN

f(x)−
∫
A

f(x)

∣∣∣∣ ≤ Nm(EN△A) < Nϵ

If we choose ϵ small enough, we see the contradiction since
∫ 2

1
g(x)f(x) > 0.

Problem 3. A. Prove that there exists a sequence of measurable functions gn on [0, 1] such that

(a) gn(x) ≥ 0 for any x ∈ [0, 1];

(b) limn gn(x) = 0 a.e.;

(c) For any continuous function f ∈ C[0, 1],

lim
n→∞

∫ 1

0

f(x)gn(x)dx =

∫ 1

0

f(x)dx.

Proof. (Solution from Ting Lu, TeX-ed by John Weeks)

It suffices to assume f is non-negative. Any f ∈ C[0, 1] is uniformly continuous since [0, 1] is

compact. The following lemma will then come in handy:

Claim. With f as above, n
∫
[x,x+ 1

n2 ]
(f(y)− f(x))dy = o( 1n ).

For any ϵ > 0, ∃N ∈ N such that 0 < x < 1
N then f(x) − f(0) < ε. Hence for n > N ,

n
∫
[0, 1

n2 ]
(f(x)− f(0)) < nϵ 1

n2 .

A clear extension to this is that
∫
[x,x+ 1

n ]
(f(y)− f(x))dy = o( 1n ).

Let gn(x) :=
∑n−1

k=0 nχ[ kn , kn+ 1
n2 ], and let ε,N be as above. Clearly gn is measurable and satisfies

(a) and (b) above. To prove (c), observe that, for n > N ,

Ik :=

∣∣∣∣∣
∫ k+1

n

k
n

nfχ[ kn , kn+ 1
n2 ] − f

∣∣∣∣∣
=

∣∣∣∣∣n
∫ k

n+ 1
n2

k
n

f −
∫ k+1

n

k
n

f

∣∣∣∣∣
= o

(
1

n

)
.
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Hence |
∫
(fgn − f)| ≤

∑n−1
k=0 Ik = o(1).

B. If gn is a sequence of measurable functions on [0, 1] such that (a), (b), and (c) are satisfied,

what can you say about
∫ 1

0
supn gn(x)dx?

Proof. TBD

Problem 4. We say that a sequence {an}∞n=1 in [0, 1] is equidistributed (in [0, 1]) if and only if for

all intervals [c, d] ⊂ [0, 1],

lim
n→∞

|{a1, . . . , an} ∩ [c, d]|
n

= d− c.

(Here |A| denotes the number of elements in the set A.)

Let µN = 1
N

∑
1≤n≤N δan

with δan
the point measure at an, that is, for any subset S ∈ [0, 1],

δan
(S) =

{
1 if an ∈ S

0 if an /∈ S
.

Show that {an} ⊂ [0, 1] is equidistributed if and only if

lim
N→∞

∫ 1

0

fdµN =

∫ 1

0

fdm,

for all continuous functions on [0, 1], where m is Lebesgue measure.

Proof. Note that {an} is equidistributed if and only if

lim
n

|{a1, . . . , an} ∩ [c, d]|
n

= d− c

if and only if

lim
n

∫ 1

0

fdµN =

∫ 1

0

fdm for f simple functions (since we can take f = χ[c,d])

⇒) It’s easy to see if {an} is equidistributed for f = χ[c,d].

lim
N

∫ 1

0

fdµN = lim
N

|{a1, . . . , aN} ∩ [c, d]|
N

= d− c =

∫ 1

0

fdm

Thus, ”=” holds for step functions.

Using Darboux’s definition of integral for f ∈ C[0, 1], ∀ϵ > 0 there exists step functions f1, f2 such

that f1 ≤ f ≤ f2 and
∫ 1

0
(f2 − f1)dx < ϵ where the lower sum is
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∫ 1

0

f1(x)dx = lim
N

1

N

N∑
1

f1(an) ≤ lim inf
N

1

N

N∑
1

f(an)

and the upper sum is

∫ 1

0

f2(x)dx = lim
N

1

N

N∑
1

f2(an) ≥ lim sup
N

1

N

N∑
1

f(an)

Then

∣∣∣∣∣lim sup
N

1

N

N∑
1

f(an)− lim inf
N

1

N

N∑
1

f(an)

∣∣∣∣∣ ≤ ϵ.

Therefore limN
1
N

∑N
1 f(an) exists and by definition must be

∫ 1

0
fdµ.

⇐) If we know limK

∫ 1

0
gndµK =

∫ 1

0
gndµ for all gn ∈ C[0, 1]. Let f = χ[c,d], choose gn → f in L1

and each gn ↘ f positive, gn ∈ C[0, 1] with gn|[c,d] = 1 = f |[c,d].

We want to show limK

∫ 1

0
fdµK =

∫ 1

0
fdm. Indeed,

∣∣∣∣∫ 1

0

fdµK −
∫ 1

0

fdm

∣∣∣∣ =
∣∣∣∣∣
∫ d

c

fdµK −
∫ d

c

fdm

∣∣∣∣∣
=

∣∣∣∣∣
∫ d

c

gndµK −
∫ d

c

fdm

∣∣∣∣∣
=

∫ d

c

gndµK −
∫ d

c

fdm

≤
∫ 1

0

gndµK −
∫ 1

0

fdm

≤
∣∣∣∣∫ 1

0

gndµK −
∫ 1

0

gndm

∣∣∣∣+ ∣∣∣∣∫ 1

0

gndm−
∫ 1

0

fdm

∣∣∣∣→ 0.

Problem 5. Consider the space C([0, 1]) of real-valued continuous functions on the unit interval

[0, 1]. We denote by ∥f∥∞ := supx∈[0,1] |f(x)| the supremum norm of f ∈ C([0, 1]) and by ∥f∥2 :=

(
∫ 1

0
|f(x)|2dx) 1

2 the L2-norm of f ∈ C([0, 1]). Let S be a closed linear subspace of (C([0, 1]), ∥ · ∥∞).

Show that if S is complete in the norm ∥ · ∥2, then S is finite-dimensional.

Proof. Let T : (S, ∥ · ∥2) → (S, ∥ · ∥∞) by T (x) = x. Note that both spaces are complete.

Assume xn → x in ∥ · ∥2 and T (xn) → y in ∥ · ∥∞ then
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∥T (xn)− y∥2 ≤ ∥T (xn)− y∥∞ → 0.

So

∥x− y∥2 ≤ ∥x− T (xn)∥2 + ∥T (xn)− y∥2 ≤ ∥x− xn∥2 + ∥T (xn)− y∥∞ → 0

so x = T (x) = y.

Therefore, by closed graph theorem, we know T is bounded. So there exists some C such that ∥f∥∞ ≤
C∥f∥2.

Now let f1, . . . , fn be an orthonormal family in S. Then for all fixed x ∈ [0, 1]

f1(x)
2 + · · ·+ fn(x)

2 ≤ ∥f1(x)f1 + · · ·+ fn(x)fn∥∞ ≤ C∥f1(x)f1 + · · ·+ fn(x)fn∥2

So then because fn’s are orthogonal and ∥fk∥22 = 1,

(f1(x)
2 + · · ·+ fn(x)

2)2 ≤ C2
(
f1(x)

2∥f1∥22 + · · ·+ fn(x)
2∥fn∥22

)
= C2(f1(x)

2 + · · ·+ fn(x)
2)

Then f1(x)
2 + · · ·+ fn(x)

2 ≤ C2. So

n =

∫ 1

0

f1(x)
2 + · · ·+ fn(x)

2dx ≤
∫ 1

0

C2dx = C2 ⇒ n ≤ C2

Thus, the number of orthogonal family in S is at most C2. So S is finite dimensional.

Problem 6. Prove that if a function f : [0, 1] → R is Lipschitz, with

|f(x)− f(y)| ≤M |x− y|

for all x, y ∈ [0, 1], then there is a sequence of continuously differentialbe functions fn : [0, 1] → R
such that

(i) |f ′n(x)| ≤M for all x ∈ [0, 1];

(ii) fn(x) → f(x) for all x ∈ [0, 1].

Proof. It’s easy to prove f is absolutely continuous ⇒ f is of bounded variable ⇒ f is differentiable

a.e. ⇒ f ′ exists a.e.

Also, when f ′ exists, |f ′(x)| ≤M .

Then there exists simple ϕ1, ϕ2, . . . such that 0 ≤ |ϕ1| ≤ |ϕ2| ≤ · · · ≤ |ϕn| ≤ · · · ≤ |f ′| ≤ M and

ϕn → f ′ uniformly on [0, 1] where f ′ exists. Define
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fn(x) :=

∫ x

0

ϕn(t)dt+ f(0) f(x) :=

∫ x

0

f ′(t)dt+ f(0)

Then |f ′n(x)| = |ϕn(x)| ≤M and for all x ∈ [0, 1],

|fn(x)− f(x)| ≤
∫ x

0

|ϕn(t)− f ′(t)|dt→ 0

since ϕn converges to f ′ uniformly.

Problem 7. Given f : R → R bounded and uniformly continuous and Kn with Kn ∈ L1(R) for
n = 1, 2, 3, . . . such that

(i) ∥Kn∥1 ≤M <∞, n = 1, 2, 3, . . .

(ii)
∫∞
−∞Kn(x)dx→ 1 as n→ ∞.

(iii)
∫
{x||x|>δ} |Kn(x)| → 0 as n→ ∞ for all δ > 0.

Show that Kn ∗ f → f uniformly, where

Kn ∗ f(x) =
∫ ∞

−∞
Kn(y)f(x− y)dy.

Proof. For all x ∈ R,

|Kn ∗ f(x)− f(x)| ≤
∣∣∣∣Kn ∗ f(x)−

∫ ∞

−∞
Kn(y)f(x)dy

∣∣∣∣+ ∣∣∣∣∫ ∞

−∞
Kn(y)f(x)dy − f(x)

∣∣∣∣
≤
∫ ∞

−∞
|Kn(y)||f(x− y)− f(x)|dy + ∥f∥∞

∣∣∣∣∫ ∞

−∞
Kn(y)dy − 1

∣∣∣∣
≤
∫ ∞

−∞
|Kn(y)||f(x− y)− f(x)|dy + cϵ

=

∫
B(0,δ)

|Kn(y)||f(x− y)− f(x)|dy +
∫
B(0,δ)c

|Kn(y)||f(x− y)− f(x)|dy + cϵ

For
∫
B(0,δ)

|Kn(y)||f(x− y)− f(x)|dy, by uniform continuity we ahve

∫
B(0,δ)

|Kn(y)||f(x− y)− f(x)|dy ≤ ϵ

∫
B(0,δ)

|Kn(y)|dy ≤ ϵ∥Kn∥1 < ϵM

For
∫
B(0,δ)c

|Kn(y)||f(x− y)− f(x)|dy, by the third assumption we have

∫
B(0,δ)c

|Kn(y)||f(x− y)− f(x)|dy ≤ 2∥f∥∞
∫
B(0,δ)c

|Kn(y)|dy ≤ 2Cϵ
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Let ϵ→ 0, so we’ve got it.

Problem 8. (a) Construct a Lebesgue measurable subset A of R so that for all reals a < b, 0 <

m(A ∩ [a, b]) < b− a where m is Lebesgue measure on R.

Proof. Enumerate all rational intervals I1, I2, . . . . For each In, construct a fat Cantor set Nn ⊆
In with positive measure.

Since Nn is nowhere dense, there exists some interval Ĩn ⊆ In and Ĩn ∩Nn = ∅.

Construct another fat Cantor set Mn ⊆ Ĩn and define A :=
⋃
Mn.

Now, for all I = [a, b] there exists some n such that Nn ⊆ In ⊆ I with Nn ∩ A = ∅ (can be done

by induction). We see m(A ∩ I) ≥ m(Mn) > 0 and

m(A ∩ I) < m(I\Nn) = m(I)−m(Nn) < m(I) = b− a.

(b) Suppose A ⊆ R is a Lebesgue measurable set and assume that

m(A ∩ (a, b)) ≤ b− a

2

for any a, b ∈ R, a < b. Prove that µ(A) = 0.

Proof. Consider an open set U ⊇ A with m(U\A) < ϵ. Then U = ⊔∞
i=1(ai, bi) and measurable.

So

m(U) = m(A ∩ U) +m(U ∩Ac) < m(A ∩ U) + ϵ

Since

m(A ∩ U) = m (A ∩ (⊔∞
i=1(ai, bi))) =

∞∑
i=1

m(A ∩ (ai, bi)) ≤
∞∑
i=1

bi − ai
2

=
1

2
m(U)

then

m(U) <
1

2
m(U) + ϵ ⇒ m(U) < 2ϵ ⇒ m(A) ≤ m(U) → 0

Problem 9. Prove or disprove that the unit ball of L7(0, 1) is norm closed in L1(0, 1).

Proof. Let

B :=

{
f |
∫ 1

0

|f |7dx ≤ 1

}
.

Let {fn} ⊆ B such that fn → f in L1. We want to show f ∈ B ⇔
∫ 1

0
|f |7dx ≤ 1.
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Since fn → f in L1, then fn → f in measure. Thus, there exists a subsequence fnk
such that fnk

→
f a.e.

Therefore, |fnk
|7 → |f |7 a.e.. By Fatou’s Lemma,

∫ 1

0

|f |7dx ≤ lim inf
k

∫ 1

0

|fnk
|7dx ≤ 1.

Problem 10. Let C be the Banach space of convergent sequences of real numbers under the supre-

mum norm. Compute the extreme points of the closed unit ball, B, of C and determine whether B

is the closed convex hull of its extreme points.

Proof. If |x(m)| < 1 for some m then there exists δ > 0 such that |x(m)− δ| ≤ 1, |x(m) + δ| ≤ 1.

Define y1, y2 ∈ B such that

y1(n) = x(n) for n ̸= m and y1(m) = x(m) + δ

y2(n) = x(n) for n ̸= m and y2(m) = x(m)− δ

Then y1 ̸= y2 and x = 1
2 (y1 + y2) so x is not an extreme point.

If |x(n)| = 1 for all n, if x = λy1 + (1− λ)y2 for y1 ̸= y2 ∈ B then since |yi(n)| ≤ n,

|x(n)| = 1 = |λy1(n) + (1− λ)y2(n)| ≤ λ|y1(n)|+ (1− λ)|y2(n)| ≤ 1

Equality holds only when y1(n) = y2(n) = ±1. So y1 = y2 so x is indeed an extreme point. Also, x

needs to be convergent so

Ext(B) = {x | |x(n)| = 1 ∃N s.t. x(n) = 1 or − 1 for all n > N}.

We note that B(C) is a closed subset of B(ℓ∞), which is weak*-compact since (ℓ1)∗ = ℓ∞. Clearly

B(C) is convex, so Krein-Milman implies that B(C) is the weak*-closure of the convex hull of its

extreme points. Now any element of a sequence in the weak*-closure is going to be the pointwise

limit of a convex combination of ones and negative ones (using the δn ∈ ℓ1(N) functions for n ∈ N),
so the sequence will be in the norm closure of B(ℓ∞); it remains to show that such a sequence will

be in B(C).

Let bn :=
∑n

i=1 λia
i
n be the pointwise limit of sequences (ain) ∈ Ext(C) where 0 ≤ λi ≤ 1 and∑

i λi = 1. Fix ε > 0 and pick a finite subset S ⊂ N such that
∑

{λi : i ∈ S} > 1 − ε. There exists

an N > 0 such that m,n > N ⇒ |aim − ain| < ε for i ∈ S (this would in fact mean aim = ain by

characterization of Ext(B(C)) for small enough ε). So

|bm − bn| ≤
∑
i∈S

λi|aim − ain|+
∑
i/∈S

λi2 ≤ 3ε.
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Therefore (bn) is Cauchy and hence converges, so (bn) is in the norm closure of B(C). Hence the

weak*-closure and norm closures of Ext(B(C)) coincide.

Problem 11. Show that every convex continuous function defined on the convex unit ball of a re-

flexive Banach space achieves a minimum. (A convex function on a convex subset A of a normed

space is a real valued function, f , on A s.t. for every x, y ∈ A and every 0 < λ < 1 we have

f(λx+ (1− λ)y) ≤ λf(x) + (1− λ)f(y).)

Proof. By Alaoglu, the closed unit ball of a reflexive Banach space is weak-compact ( in X)= weak*-

compact (in X∗∗).

We take Mazur’s theorem without proof: for any convex set A, A is closed iff A is weakly closed.

(This is a direct consequence of Hahn-Banach Separation Theorem, which is not in Folland but is

an extremely useful theorem. It is worth looking up.)

Let α = inf{f(x) : x ∈ B(1, 0)}. We look at the following cases:

(1) α = −∞. Let Bn := f−1((−∞,−n]). Then each Bn is nonempty, convex, closed (hence weakly

closed) subset of B(1, 0). These are nested sets with the finite intersection property by assumption,

so there exists an x ∈
⋂∞

n=1Bn and f(x) < −n for all n, contradiction.

(2) α ∈ R. Let Bn := f−1([α, α + 1
n ]). These are nonempty, convex, closed (hence weakly closed)

subsets of B(1, 0). Hence these are nested sets with the finite intersection property, so there exists

an x ∈
⋂∞

n=1Bn and f(x) = α.

16 August 2016

Problem 1. Let A be the set of all real valued functions on [0, 1] for which f(0) = 0 and |f(t) −
f(s)|1/2 ≤ t− s for all 0 ≤ s < t ≤ 1

(a) Prove that A is a compact subset of C[0, 1].

Proof. It should be clear to the reader that this question requires Arezela-Ascoli Theorem. To

see A is equicontinuous, fix x ∈ [0, 1] and ϵ > 0. Then for y ∈ B(
√
ϵ, x),

|f(x)− f(y)| ≤ |x− y|2 < ϵ

For pointwise bounded, for x ∈ [0, 1] then |f(x)|1/2 = |f(x)− f(0)|1/2 ≤ x implies |f(x)| ≤ x2.

To see A is closed, take a sequence {fn} ⊆ A such that fn → f (i.e. for all open U containing

f , there exists N such that for all n ≥ N , fn ∈ U), then

|f(t)− f(s)| ≤ |f(t)− fn(t)|+ |fn(t)− fn(s)|+ |fn(s)− f(s)| < 2ϵ+ |t− s|2

This holds for all ϵ > 0 so |f(t)− f(s)| ≤ |t− s|2.
Clearly, f(0) = 0 so f ∈ A. Thus A is closed so by Arzela-Ascoli, A is compact in C[0, 1].

(b) Prove that A is a compact subset of L1[0, 1]
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Proof. Consider the map

id : C[0, 1] → L1[0, 1]

f 7→ f

Since ∥ id ∥1 =
∫ 1

0
|f |dx ≤ ∥f∥∞, id is a bounded map.

From (a), A is compact in C[0, 1] so id(A) = A ⊆ L1[0, 1] is also compact.

Remark: A is also closed in L1[0, 1] since all compact subsets of a metric space is closed.

Problem 2. (a) Let f(x) be a real valued function on the real line that is differentiable almost ev-

erywhere. Prove that f ′(x) is a Lebesgue measurable function.

Proof. Let

fn9x) =
f(x+ 1/n)− f(x)

1/n

so fn → f ′ almost everywhere. Since f is differentiable almost everywhere, then f is continuous

almost everywhere.

Claim: f is Lebesgue measurable

Let D = {all discontinuities of f} so m(D) = 0 and D is measurable. Let E = Dc = {x |
f is continuous at x} so E is measurable too.

f−1((a,∞)) = f−1((a,∞) ∩ E) ∪ f−1((a,∞) ∩ Ec)

Since f |E is continuous, f−1(a,∞) ∩ E = f |−1
E (a,∞) is open in E. So f−1(a,∞) ∩ E = U ∩ E

for some open set U ⊆ R. Then f−1(a,∞) ∩ E is measurable.

Now f−1(a,∞) ∩ Ec ⊆ Ec, so completeness implies f−1(a,∞) ∩ Ec is measurable. Thus, f is

Lebesgue measurable so the claim holds.

So each fn is measurable, thus f ′ = lim fn almost everywhere is also Lebesgue measurable.

(b) Prove that if f is a continuous real valued function on the real line, then the set of points at

which f is differentiable is measurable.

Proof. Let

F (x, h) =
f(x+ h)− f(x)

h

which is continuous on R × (R\{0}). If x is a differentiable point of f , then for all ϵ > 0, there

exists a δ > 0 and some Y such that for all h with |h| < δ, we have |F (x, h)− Y | < ϵ. i.e.

D = {x | differentiable point of f} =
⋂
ϵ

⋃
δ

⋃
Y

⋂
|h|<ϵ

{x | |F (x, h)− Y | < ϵ}
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For fixed ϵ, δ, Y, h then {x | |F (x, h)− Y | < ϵ} is open, thus Borel.

By taking only rational ϵ, δ, Y, h we have D Borel measurable.

Problem 3. (a) Let f be a real valued function on the unit interval [0, 1]. Prove that the set of

points at which f is discontinuous is a countable union of closed subsets.

Proof. f is continuous at p if for all n, there exists an open U containing p such that |f(x) −
f(y)| < 1/n for all x, y ∈ U . Fix n and let

Vn =
⋃
p

{p s.t. there exists an appropriate U} =
⋃

{appropriate U}

Hence, Vn is open. Then

{points where f is continuous} =
⋂
n

Vn

So {points where f is discontinuous} =
⋃

n V
c
n where V c

n is closed.

(b) Prove that there does not exist a real valued function on [0, 1] that is continuous at all rational

points but discontinuous at all irrational points.

Proof. By (a), the irrational poitns would be a countable union of closed subsets. Note that be-

cause any open set in [0, 1] contains a rational point, then if Qc
[0,1] =

⋃
n Fn where Fn is closed

and F ◦
n = ∅. Then

[0, 1] = Q[0,1] ∪Qc
[0,1] =

⋃
q∈Q

{q}

 ∪

(⋃
n

Fn

)

So [0, 1] is a countable union of nowhere dense sets. This contradicts Baire-Category Theorem.

Problem 4. Let (Ω,A, µ) be a finite measure space and let (fn) be a sequence of measurable func-

tions on X that converges pointwise to zero. Prove that (fn) converges in measure to zero. Show

that the converse is false for [0, 1] with Lebesgue measure.

Proof. Fix ϵ > 0. To show µ({x | |fn(x)| > ϵ}) → 0, we need ∀m ∃Nm such that ∀n ≥ Nm,

µ({x | fn(x)| > ϵ}) < 1/m.

By Egoroff’s Theorem, there exists some E ⊆ X with µ(E) < 1/m and fn ⇒ 0 uniformly on Ec.

Thus, ∃Nm such that for n ≥ Nm |fn(x)| < ϵ for all x ∈ Ec so

µ({x | |fn(x)| > ϵ}) ≤ µ(E) <
1

m
∀n ≥ Nm

Thus, µ({x | |fn(x)| > ϵ}) → 0.
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Counterexample: Let f1 = χ[0,1], f2 = χ[0,1/2], f3 = χ[1/2,1], . . . , fn = χ
[j/2k,(j+1)/2k] for n =

2k + j, 0 ≤ j < 2k.

So fn does not approach 0 pointwise, but fn → 0 in L1, hence in measure.

Problem 5. If f is Lebesgue integrable on the real line, prove that limh→0

∫
R |f(x+h)−f(x)|dx = 0.

Proof. Recall: the set Cc(R) of continuous, compactly supported functions is dense in L1(R).

Fix ϵ > 0 and find g ∈ Cc(R) with ∥f − g∥1 < ϵ. Since g is continuous, limn |g(x + 1/n) − g(x)| = 0

ofr all x.

Since g is compactly supported, then there exists some compact K such that supp(g) ⊆ K.

So there exists a compact K ′ such that supp(g) ∪ supp(g(x+ 1/n)) ⊆ K ′ for all n (this follows from

1/n ≥ 1 for all n since we can take K ′ = {k + x | k ∈ K,x ∈ [0, 1]}).

Dini’s theorem implies that |g(x+ 1/n)− g(x)| ⇒ 0 so

∫
R|g(x+ 1/n)− g(x)|dx =

∫
K′

|g(x+ 1/n)− g(x)|dx→ 0

So then

∫
R
|f(x+ 1/n)− f(x)|dx

≤
∫
R
|f(x+ 1/n)− g(x+ 1/n)|dx+

∫
R
|g(x+ 1/n)− g(x)|dx+

∫
R
|g(x)− f(x)|dx

< 2ϵ+

∫
R
|g(x+ 1/n)− g(x)|dx→ 2ϵ

Since it holds for all ϵ > 0 then limn

∫
R |f(x+ 1/n)− f(x)|dx = 0.

Problem 6. Prove or disprove that there exists a sequence (Pn) of polynomials such that (Pn(t))

converges to one for every t ∈ [0, 1] but
∫ 1

0
Pn(t)dt converges to two as n→ ∞.

Proof. Consider

fn(x) =


n2x x ∈ [0, 1/n]

−n2x+ 2n+ 1 x ∈ [1/n, 2/n]

1 x ∈ [2/n, 1]

(that is, fn linearly connects the points (0, 1), (1/n, n+ 1), (2/n, 1), (1, 1).)

So fn(x) → 0 for all x ∈ [0, 1] but
∫ 1

0
fn(x)dx = 2.

Then by Stone-Weierstrass, we can find polynomials Pn such that ∥fn − Pn∥∞ ≤ 2−n. Then ∀x
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|Pn(x)− 1| ≤ |Pn(x)− fn(x)|+ |fn(x)− 1| → 0

and
∫ 1

0
|fn(x)− Pn(x)|dx→ 0 so

∫ 1

0
Pn(x)dx→ 2.

Problem 7. Let (fn) be a uniformly bounded sequence of continuous functions on [0, 1] that con-

verges pointwise to zero. Prove that 0 is in the norm closure in C[0, 1] of the convex hull of (fn)

(the norm is of course the sup norm on C[0, 1]).

Proof. By the Geometrical version of the Hahn-Banach,

conv{fn}
weak

= conv{fn}
∥·∥

We just need to show that 0 ∈ conv{fn}
weak

. By Riesz-Representation Theorem, C[0, 1]∗ = M[0, 1].

For all µ ∈M [0, 1],

∣∣∣∣∣
∫
[0,1]

fndµ

∣∣∣∣∣ ≤
∫
[0,1]

|fn|d|µ| → 0

by Dominated Convergence Theorem. Thus, fn → 0 weakly.

Problem 8. Assume that X is a reflexive Banach space and ϕ is a continuous linear functional on

X. Prove that ϕ achieves its norm; that is, prove that there is a norm one vector x in X such that

ϕ(x) = ∥x∥. Show by example that there is a continuous linear functional on the Banach space ℓ1
that does not achieve its norm.

Proof. Recall: X reflexive ⇒ BX is weak-compact ⇒ BX is weak-sequentially compact.

There exists a sequence {xn} ⊆ BX such that ϕ(xn) ↗ ∥ϕ∥.

Choose a weakly-convergent subsequence {xnk
} that converges to x ∈ BX . Then for all φ ∈ X∗,

φ(xnk
) → φ(x).

In particular,

∥ϕ∥ = lim
n
ϕ(xn) = lim

k
ϕ(xnk

) = ϕ(x).

Alternative Proof. For all ϕ ∈ X∗, by Hahn-Banach Separation Theorem, there exists some x∗∗ ∈
X∗∗ such that ∥x∗∗∥X∗∗ = 1 and x∗∗(ϕ) = ∥ϕ∥X∗ .

Since X is reflexive, ∃x ∈ X such that x̂ = x∗∗ so

∥ϕ∥X∗ = x∗∗(ϕ) = x̂(ϕ) = ϕ(x).

Counterexample: Choose y = (1− 1/n)n ∈ ℓ∞. Then ∀x ∈ ℓ1,

86



16 AUGUST 2016 Texas A&M

y(x) =

∣∣∣∣∣
∞∑

n=1

(
1− 1

n

)
x(n)

∣∣∣∣∣ ≤
∞∑

n=1

(
1− 1

n

)
|x(n)| <

∞∑
n=1

|x(n)| = ∥x∥1 = 1 = ∥y∥∞.

Problem 9. Suppose that X is a non separable Banach space. Prove that there is an uncountable

subset A of the unit ball of X such that for all x ̸= u in X, ∥x− y∥ > 0.9.

Proof. By transfinite induction, construct (xα)α < ω1 ⊆ BX where ω1 is the uncountable ordinal.

Given α < ω1, let Uα := span{xβ | β < α} which is separable.

Since X is not separable, Uα ⊊ X.

By Riesz-Lemma, there exists ∥xα∥ = 1 such that d(xα, Uα) ≥ 1− ϵ (put ϵ > 0.1).

So (xα) satisfies ∥xα − xβ∥ ≥ 0.9 and is uncountable.

Alternative Proof if it were not restricted to BX . Fix r > 0. Zornicate over all subsets A ⊆ X such

that ∀x ̸= y, ∥x− y∥ > r.

Find a maximal subset Ar ⊆ X as above. If Ar is uncountable, by scaling of r, we’re done.

Suppose not, so each Ar is countable. Enumerate as {xrn}n. By maximality, for all x ∈ X, ∀ϵ > 0 if

r > 1/ϵ then there exists n ∈ N such that ∥x− xmn ∥ < r < ϵ (i.e. d(x,Ar) < r,∀x ∈ X).

Let A =
⋃

q∈QAq so A is a countable dense subset of X. Contradiction!

Therefore, there exists q ∈ Q such that Aq is uncountable. Consider A′ = { 0.9
q x | x ∈ Aq} so for all

x′, y′ ∈ A,

∥x′ − y′∥ =

∥∥∥∥0.9q x− 0.9

q
y

∥∥∥∥ =
0.9

q
∥x− y∥ > 0.9

Thus, there eixsts an uncountable A ⊆ X such that for all x, y ∈ A, ∥x− y∥ > 0.9.

Problem 10. If A is a Borel subset of the line, then E = {(x, y) | x − y ∈ A} is a Borel subset of

the plane. If the Lebesgue measure of A is 0, then the Lebesgue measure of E is 0.

Proof. Define f(x, y) = x− y : R2 → R. This is continuous. Let

A := {S ⊆ R | f−1(S) is a Borel set of R2}

Then A is a σ-algebra (easy to check). If S is open, then f−1(S) is open in R2, thus Borel. So {open sets} ⊆
A and so the Borel algebra is a subset of A. In particular, A ∈ A.

Let E = f−1(A) which is a Borel set of R2. If m(A) = 0, let

Ey = {x ∈ R | (x, y) ∈ E} = y +A
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This is a null set since m(y +A) = m(A) = 0. Thus, (m×m)(E) =
∫
m(Ey)dm(y) = 0.

17 January 2016

Problem 1. Let E be a measurable subset of [0, 1]. Suppose there exists α ∈ (0, 1) such that

m(E ∩ J) ≥ α ·m(J)

for all subintervals J of [0, 1]. Prove that m(E) = 1.

Proof. It’s easy to see that m(E) ≤ 1.

For any open U ⊆ [0, 1], write U = ⊔∞
i=1Ii where each Ii is an open interval. Then

m(E ∩ U) =

∞∑
i=1

m(E ∩ Ii) ≥
∞∑
i=1

αm(Ii) = αm(U).

Assume m(E) < 1, so m(Ec) := a > 0. We may find some open U ⊇ Ec such that m(U ∩ E) =

m(U\Ec) < ϵ. So

ϵ > m(U ∩ E) ≥ αm(U) ≥ αm(Ec) = αa > 0.

Letting ϵ→ 0, this leads to a contradiction.

Problem 2. Let f, g ∈ L1([0, 1]). Suppose

∫ 1

0

xnf(x)dx =

∫ 1

0

xng(x)dx

for all integers n ≥ 0. Prove that f(x) = g(x) a.e.

Proof. See # 2 from January 2017.

Problem 3. Let f, g ∈ L1([0, 1]). Assume for all functions φ ∈ C∞[0, 1] with φ(0) = φ(1) we have

∫ 1

0

f(t)φ′(t)dt = −
∫ 1

0

g(t)φ(t)dt.

Show that f is absolutely continuous and f ′ = g a.e.

Proof. Fix x ∈ [0, 1] and construct hn via
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hn(t) =


nt t ∈ [0, 1/n]

1 t ∈ [1/n, x]

1− n(t− x) t ∈ [x, x+ 1/n]

0 t ∈ [x+ 1/n, 1]

(i.e. hn(t) linearly connects the points (0, 0), (1/n, 1), (x, 1), (x+ 1/n, 0), and (1, 0).

Since C∞[0, 1] is dense in ∥ · ∥∞, we may use this example rather than some φ ∈ C∞[0, 1] (i.e. pass

to the continuous case). Then

∫ 1

0

f(t)h′n(t)dt =

∫ 1/n

0

f(t)ndt+ 0 +

∫ x+1/n

x

f(t)(−n)dt+ 0 → f(0)− f(x)

where the limit follows from Lebesgue Differentiation Theorem. Also,

∫ 1

0

g(t)hn(t)dt =

∫ 1/n

0

nt g(t)︸︷︷︸
→0

dt+

∫ x

1/n

g(t)dt+

∫ x+1/n

x

g(t)dt−
∫ x+1/n

x

n (t− x)g(t)︸ ︷︷ ︸
→0 as t→x

dt+ 0

→ 0 +

∫ x+1/n

1/n

g(t)dt− 0

where the limit again follows from Lebesgue Differentiation Theorem. Taking the limit as n → ∞
on both sides, we get

∫ x

0
g(t)dt = limn

∫ x+1/n

1/n
g(t)dt. So

f(0)− f(x) = lim
n

∫ 1

0

f(t)h′n(t) = lim
n

−
∫ 1

0

g(t)hn(t)dt = −
∫ x

0

g(t)dt

Implying f(x) = f(0) +
∫ x

0
g(t)dt. Then

f ′(x) = lim
h→0

f(x+ h)− f(x)

h
= lim

h→0

f(0) +
∫ x+h

0
g(t)dt− f(0)−

∫ x

0
g(t)dt

h
= lim

h→0

∫ x+h

x
g(t)dt

h
= g(x)

and f is absolutely continuous.

Problem 4. Let {gn} be a sequence of measureable functions on [0, 1] such that

(i) |gn(x)| ≤ C, for a.e. x ∈ [0, 1]

(ii) and limn→∞
∫ a

0
gn(x)dx = 0 for every a ∈ [0, 1].

Prove that for each f ∈ L1([0, 1]), we have
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lim
n→∞

∫ 1

0

f(x)gn(x)dx = 0.

Proof. Let S = span{χ[0,a] | a ∈ [0, 1]}. Then S is dense in the space of step functions in L1. Step

function space is dense in L1 so S is dense in L1. Then for every f ∈ L1[0, 1] there exists a sequence

hm =
∑Km

i=1 K
(m)
i

χ[0,ai] → f in L1.

For a fixed m,

lim
n

∫ 1

0

hmgndx =

Km∑
i=1

K
(m)
i lim

n

∫ ai

0

gn(x)dx = 0

where the second equality follows from (ii). For every ϵ > 0, we can choose some m such that ∥hm −
f∥1 < ϵ.

For that m, choose some N such that
∣∣∣∫ 1

0
hmgn dx

∣∣∣ < ϵ for all n > N . Then

∣∣∣∣∫ 1

0

f(x)gn(x)dx

∣∣∣∣ ≤ ∣∣∣∣∫ 1

0

(
f(x)− hm(x)

)
gn(x)dx

∣∣∣∣+ ∣∣∣∣∫ 1

0

hm(x)gn(x)dx

∣∣∣∣
≤ c∥f − hm∥1 + ϵ

< (c+ 1)ϵ

Thus,
∫ 1

0
f(x)gn(x)dx = 0.

Problem 5. (a) Let X be a normed vector space and Y be a closed linear subspace of X. Assume

Y is a proper subspace, that is, Y ̸= X. Show that, for all 0 < ϵ < 1, there is an element x ∈ X

such that ∥x∥ = 1 and

inf
y∈Y

∥x− y∥ > 1− ϵ

Proof. Fix some x0 ∈ X\Y , denote infy∈Y ∥x0 − y∥ = d > 0. Now for every ϵ > 0 choose some

δ > 0 such that d
d+δ > 1− ϵ.

Choose y0 ∈ Y such that ∥x0 − y0∥ < d+ δ. Let x = x0−y0

∥x0−y0∥ so ∥x∥ = 1 and

inf
y∈Y

∥x− y∥ = inf
y∈Y

∥∥∥∥ x0 − y0
∥x0 − y0∥

− y

∥∥∥∥ =
1

∥x0 − y0∥
inf
y′∈Y

∥x0 − y′∥ > d

d+ δ
> 1− ϵ.

(b) Use part (a) to prove that, if X is an infinite dimensional normed vector space, then the unit

ball of X is not compact.

Proof. If we construct a sequence {xn} such that there are no convergent subsequences, we are

done.
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Assume we have chosen {x1, x2, . . . , xn−1} ⊆ BX . Let Y = span{x1, x2, . . . , xn−1}. By part (a),

there exists some xn ∈ B such that ∥xn∥ = 1 and infy∈Y ∥xn − y∥ > 1/2.

Then we have a sequence {xn} ⊆ BX such that ∥xn − xm∥ > 1/2 for all n ̸= m so no convergent

subsequence may exist.

Problem 6. Let {fk} be a sequence of increasing functions on [0, 1]. Suppose

∞∑
k=1

fk(x)

converges for all x ∈ [0, 1]. Denote the limit function by f , that is,

f(x) =

∞∑
k=1

fk(x).

Prove that

f ′(x) =

∞∑
k=1

f ′k(x), a.e. x ∈ [0, 1].

Proof. It’s easy to see f is increasing, so it’s differentiable almost everywhere. Let FN =
∑N

n=1 fn
so FN → f for all x ∈ [0, 1]. Choose an increasing sequence Nk such that 0 ≤ f(1) − FNk

(1) ≤ 2−k.

Then

∞∑
k=1

(
f(1)− FNk

(1)
)
≤

∞∑
k=1

2−k = 1.

Now, let g(x) :=
∑∞

k=1

(
f(x)− FN−k(x)

)
=
∑∞

k=1

∑∞
n=Nk+1 fn(x).

Since
∑∞

n=Nk+1 fn(x) is increasing as x increases, then g is increasing.

So 0 ≤ g(x) ≤ g(1) ≤ 1 and g is differentiable almost everywhere. Now,

1

h

(
g(x+ h)− g(x)

)
=

1

h

∞∑
k=1

(
f(x+ h)− FNk

(x+ h)
)
−
(
f(x)− FNk

(x)
)
.

So since f ′(x)−FNk
(x) =

∑∞
n=Nk+1 fn(x) is increasing, g

′(x) ≥
∑∞

k=1 f
′(x)−F ′

Nk
(x) ≥ 0. Therefore,∑∞

k=1 f
′(x) − FNk

(x) converges. So limk F
′
Nk

(x) = f ′(x), implying f ′(x) =
∑∞

k=1 f
′
k(x) almost

everywhere.

Problem 7. Suppose f, g : [a, b] → R are both continuous and of bounded variation. Show that the

set

{(f(t), g(t)) ∈ R2 | t ∈ [a, b]}
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cannot cover the entire unit square [0, 1]× [0, 1].

Proof. Define r(t) = (f(t), g(t)). Since R2 is finite dimensional, ℓ1 ∼ ℓ2. Since f and g have bounded

variation, so does r. Thus, we know that whenever a = x0 < x1 < x2 < . . . < xn = b we have∑n
i=1 ∥r(xi)− r(xi−1)∥2 < M .

Now suppose [0, 1] × [0, 1] can be covered. Divide [0, 1] × [0, 1] into n2 small squares with center zj
and the length of each edge is 1/n. Then choose tj such that r(tj) = zj .

Now relabel/reorder the tj in increasing order so that s1 < s2 < . . . < sn2 . Then since the distance

between two centers is at least 1/n,

n2−1∑
j=1

∥r(sj+1)− r(sj)∥2 ≥
n2−1∑
j=1

1/n =
n2 − 1

n
→ ∞.

This is a contradiction!

Problem 8. Prove the following two statements:

(a) Suppose f is a measurable function on [0, 1], then

∥f∥L∞ = lim
p→∞

∥f∥Lp

Proof. In [0, 1], by Hölder, we know that ∥f∥p ≤ ∥f∥q when p ≤ q. Also, ∥f∥p ≤ ∥f∥∞ for all p.

Therefore, ∥f∥p ↗≤ ∥f∥∞ and so limp ∥f∥p ≤ ∥f∥∞.

On the other hand, for every ϵ > 0, let E = {x | |f(x)| > ∥f∥∞ − ϵ} and 0 < µ(E) ≤ 1 since

∥f∥∞ = esssup |f(x)|. Then ∥f∥pp ≥
∫
E
|f |p >

(
∥f∥∞ − ϵ

)p
µ(E). Take p → ∞ so limp ∥f∥p ≥

∥f∥∞ − ϵ, implying limp ∥f∥p ≥ ∥f∥∞.

(b) If fn ≥ 0 and fn → f in measure, then
∫
f ≤ lim inf

∫
fn.

Proof. Choose a subsequence {fnk
} such that limk

∫
fnk

= lim inf
∫
fn. Since fn → f in mea-

sure, fnk
→ f in measure, so there exists a further subsequence {fnkℓ

} → f a.e. Then by Fa-

tou’s Lemma, ∫
f =

∫
lim
ℓ
fnkℓ

≤ lim inf
ℓ

∫
fnkℓ

= lim
k

inf fnk
= lim inf

n

∫
fn.

Problem 9. Suppose {fn} is a sequence of functions in L2([0, 1]) such that ∥fn∥L2 ≤ 1. If f is

measurable and fn → f in measure, then

(a) f ∈ L2([0, 1]);
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Proof. fn → f in measure implies {fnk
} → f almost everwhere which implies |fnk

|2 → |f |2
almost everywhere. By Fatou’s Lemma,

∫ 1

0

|f |2dx ≤ lim
n

∫ 1

0

|fnk
|2dx ≤ 1.

So f ∈ L2.

(b) fn → f weakly in L2;

Proof. Let g ∈ L2. We want to show that fng → fg in L1. Now, fn → f in measure, then

fng → fg in measure and thus is Cauchy in measure.

Define Am,n = {x ∈ [0, 1] | |fng(x)− fmg(x)| ≥ ϵ}. Then

∫ 1

0

|fng−fmg|dx =

∫
Am,n

|fng(x)−fmg(x)|dx+
∫
[0,1]\Am,n

|fng(x)−fmg(x)|dx ≤
∫
Am,n

|fng|+|fmg|dx+ϵ.

We know for all ϵ > 0 there exists some δ > 0 such that µ(Am,n) < δ,

∫
Am,n

|fng| ≤

(∫
Am,n

|fn|2dx

)1/2(∫
Am,n

|g|2dx

)1/2

≤

(∫
Am,n

|g|2
)1/2

< ϵ.

since g ∈ L2. Then since {fng} is Cauchy in measure, there exists some N such that for all

m,n > N , µ(Am,n) < δ. Then
∫ 1

0
|fng − fmg|dx < 3ϵ implies {fng} is Cauchy in L1.

Therefore, there exists some h ∈ L1 such that fng → h in L1.

We know fng → fg in measure, so fnk
g → fg almost everywhere. Also, ∀ϵ > 0, ∃δ > 0 such

that
∫
A
|fnk

g| < ϵ for all A such that µ(A) < δ.

Therefore, {fnk
} is uniformly integrable. By Viteli Convergence Theorem, fnk

g → fg in L1.

Thus, h = fg so fng → fg in L1. So fn → f weakly.

Note: We could also have used the uniqueness of limit in the measure.

(c) fn → f with respect to norm in Lp for 1 ≤ p < 2.

Proof. Define En = {x | |fn(x) − f(x)| ≥ ϵ}. From problem 8 on this exam, we know ∥fn∥p ≤
∥fn∥2 ≤ 1 and ∥f∥p ≤ ∥f∥2 <∞. Then∫

|fn − f |p =

∫
En

|fn − f |p +
∫
Ec

n

|fn − f |pdx ≤ 2p−1

∫
En

|fn|p + |f |p + ϵ

where the inequality follows from the fact that |a− b|p ≤ 2p−1(|a|p + |b|p).

Since fn → f in measure and m(En) → 0 as n → ∞, so since f ∈ Lp then
∫
En

|f |pdx → 0 as

n→ ∞.

For some A ⊆ [0, 1], we have
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∫
A

|fn|p =

∫ 1

0

|fn|pχA ≤ ∥|fn|p∥2/p∥χA∥2/2−p = ∥fn∥p2m(A)
2

2−p ≤ m(A)
2

2−p .

So similar to the previous case, we can take m(En) small enough such that
∫
En

|fn|pdx < ϵ for

any fixed 1 ≤ p < 2.

There are a few hints in the qual

Problem 10. Suppose E is a measurable subset of [0, 1] with Lebesgue measure m(E) = 99
100 .

Show that there exists a number x ∈ [0, 1] such that for all r ∈ (0, 1),

m(E ∩ (x− r, x+ r)) ≥ r

4
.

Hint: Use the Hardy-Littlewood maximal inequality

m({x ∈ R |Mf(x) ≥ α}) ≤ 3

α
∥f∥1

for all f ∈ L1(R). Here Mf denotes the Hardy-Littlewood Maximal function of f .

Proof. The Hardy-Littlewood Maximal function of χA is

MχA = sup
r>0

1

2r

∫ x+r

x−r

χA(x)dx = sup
r>0

1

2r
m(A ∩ (x− r, x+ r)).

Assume the result is not true. Then ∀x ∈ [0, 1], ∃rx ∈ (0, 1) such that m(E ∩ (x− xr, x+ xr)) <
rx
4 .

This happens if and only if 1
2rx

m(E ∩ (x− rx, x+ rx)) < 1/8 which is equivalent to 1
2rx

m(Ec ∩ (x−
rx, x+ rx)) ≥ 7

8 .

Now set A = Ec so MχA(x) ≥ 7
8 . However,

m
(
{x ∈ [0, 1] |MχA(x) ≥

7

8
}
)
≤ 3

8

7
∥χA∥ =

24

7

1

100
=

24

100
.

But we need it to be equal to 1. Contradiction!

18 August 2015

Problem 1. Let f : R → R be a Borel measurable function. For each t ∈ R define

ft(x) = f(t+ x), x ∈ R.

Prove that ft(x) is a Borel measurable function (in x) for each fixed t ∈ R.
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Proof. We see that

f−1
t (−∞, a) = {x | f(x+ t) ∈ (−∞, a)} = {x | x+ t ∈ f−1(−∞, a)} = f−1((−∞, a))− t = B − t.

Since Tt(x) = x+ t is continuous, then T−1
t (B) = B − t is Borel.

Problem 2. Justify the statement that

∫ 1

0

∫ 1

0

(x− y) sin(xy)

x2 + y2
dx dy =

∫ 1

0

∫ 1

0

(x− y) sin(xy)

x2 + y2
dy dx.

Proof. We just need to show that
∫ 1

0

∫ 1

0

∣∣∣ (x−y) sin(xy)
x2+y2

∣∣∣ dxdy <∞. But

∫ 1

0

∫ 1

0

∣∣∣∣ (x− y) sin(xy)

x2 + y2

∣∣∣∣ dxdy =

∫ π/2

0

∫ √
2

0

∣∣∣∣r cos θ − r sin θ

r2

∣∣∣∣ |r|drdθ ≤ 2

∫ π/2

0

∫ √
2

0

drdθ =
√
2π <∞.

So the function is in L1 and Fubini gives us the desired result.

Problem 3. Assume that (fn) is a sequence in C[0, 1].

(a) Show that (fn) converges weakly to 0 if and only if (fn) is bounded in C[0, 1] and limn→∞ fn(t) =

0 for all t ∈ [0, 1].

Proof. ⇒) We know C[0, 1]∗ = M[0, 1]. Then fn → 0 weakly implies
∫
fndµ → 0 for all µ ∈

M[0, 1]. Choose µ = δt so ∫
fndδt = fn(t) → 0 ∀t ∈ [0, 1]

(this follows from the fact that weak convergence implies uniformly bounded). Consider

χ : C[0, 1] → C[0, 1]∗∗ = M[0, 1]∗

χ(fn)(µ) = µ(fn)

Since µ(fn) → 0 then χ(fn)(µ) → 0 for all µ ∈ M[0, 1]. Since convergent sequences are

bounded, then supn |χ(fn)(µ)| ≤M .

By the uniform boundedness theorem, supn ∥χ(fn)∥ < ∞. By isometry, ∥fn∥ = ∥χ(fn)∥ so

supn ∥fn∥ <∞.

⇐) By Dominated Convergence Theorem, fn → 0 in L1(µ). So therefore, |
∫
fndµ| ≤

∫
|fn|d|µ| →

0. So fn → 0 weakly.
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(b) Show that if (fn) converges weakly in C[0, 1], then it converges in norm in Lp[0, 1] for all 1 ≤
p <∞.

Proof. WLOG fn → 0 weakly. By (a) we know fn(t) → 0 and ∥fn∥∞ is bounded. Thus,

|fn(t)|p → 0 pointwise and ∥|fn|∥∞ is bounded.

By the Dominated Convergence Theorem, we have ∥fn∥p → 0.

Problem 4. Let A be a Lebesgue null set in R. Prove that

B := {ex | x ∈ A}

is also a null set.

Proof. First, assume A ⊆ [0, 1]. Then f(x) = ex is Lipschitz-continuous (i.e. |f(x)−f(y)| ≤M |x−y|
for some M). Since m(A) = 0, we can find

⋃∞
k=1Bk where Bk are open intervals such that A ⊆⋃∞

k=1Bk and m (
⋃∞

k=1Bk) < ϵ. Then

m(f(A)) ≤ m

(
f

( ∞⋃
k=1

Bk

))
≤

∞∑
k=1

Mm(Bk) < Mϵ.

So m(f(A)) = 0. Now we can write A =
⋃∞

n=−∞A ∩ [n, n+ 1] so m(f(A)) =
∑∞

−∞m(f(A ∩ [n, n+

1])) = 0.

Problem 5. (a) Define absolute continuity of a function f : R → R and of a function f : [a, b] →
R.

Proof. The function f : [a, b] → R is absolutely continuous if ∀ϵ > 0, ∃δ > 0 such that when-

ever a finite sequence of disjoint subintervals (xk, yk) ⊆ I satisfies
∑N

k=1(yk − xk) < δ then∑∞
k=1 |f(yk)− f(xk)| < ϵ.

(b) Show that if f and g are absolutely continuous on [a, b], a, b ∈ R, a < b, then f · g is absolutely

continuous on [a, b].

Proof. Since f and g are continuous on [a, b], then they achieve a maximum so we can let Mf =

sup{f(x) | a ≤ x ≤ b} <∞, Mg = sup{g(x) | a ≤ x ≤ b}.

Fix ϵ > 0. Then there exists some δf , δg > 0 such that

∑
(yk − xk) < δf ⇒

∑
|f(yk)− f(xk)| <

ϵ

2Mg∑
(yk − xk) < δg ⇒

∑
|f(yk)− f(xk)| <

ϵ

2Mf

Choose finite and disjoint such that
∑
yk − xk < min(δf , δg). Then
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∑
|f(yk)g(yk)− f(xk)g(xk)| ≤

∑
|f(yk)g(yk)− f(yk)g(xk)|+

∑
|f(yk)g(xk)− f(xk)g(xk)|

≤
∑

|f(yk)||g(yk)− g(xk)|+
∑

|g(xk)||f(yk)− f(xk)|

≤Mf

∑
|g(yk)− g(xk)|+Mg

∑
|f(yk)− f(xk)|

≤Mf
ϵ

2Mf
+Mg

ϵ

2Mg

= ϵ

This is what we wanted.

(c) Give an example to show that (b) is false if [a, b] is replaced by R.

Proof. Take f(x) = g(x) = x so fg = x2. Then

|(x+ δ)2 − x2| = |x2 + 2δx+ δ2 − x2| = |2δx+ δ2| → ∞ as x→ ∞.

So there does not exist any δ such that |fg(y)− fg(x)| < ϵ (even for just one interval!)

Problem 6. Let X and Y be Banach spaces and T : X → Y be a one-to-one, bounded and linear

operator for which the range T (X) is closed in Y . Show that for each continuous linear functional ϕ

on X there is a continuous linear functional ψ on Y , so that ϕ = ψ ◦ T .

Proof. Since T : X → T (X) is bijective, by teh open mapping theorem, T−1 is bounded so ϕ◦T−1 ∈
T (X)∗.

Then by the Hahn-Banach, there exists some ψ ∈ Y ∗ such that ψ(y) = (ϕ ◦ T−1)(y) for all y ∈ Y .

For any x ∈ X, T (x) = y ∈ Y and we have

ϕ(x) = ϕ
(
T−1(Tx)

)
= ψ(Tx) = (ψ ◦ T )(x).

Since this is true for all x ∈ X, ϕ = ψ ◦ T .

Problem 7. State the Open Mapping Theorema nd the Closed Graph Theorem for Banach spaces.

Derive the Open Mapping Theorem from the Closed Graph Theorem.

Proof. Assume T : X → Y is surjective, linear, and bounded. WLOG we want to show B(0, δ) ⊆
T (B(0, 1)) for some δ > 0. Define

G : Y → X/ ker(T )

y 7→ [x] = x+ ker(T ) where y = Tx

Then G is well-defined, because T is surjective.
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Claim: G is closed.

Assume yn → y in Y and G(yn) → [x] in X/ ker(T ). WTS G(y) = [x] ⇔ Tx = y.

We have Txn = yn so since [xn] → [x] then ∥[xn] − [x]∥ = infz∈kerT ∥xn − x − z∥ → 0. Then take

(zn) ⊆ ker(T ) such that ∥xn − x− zn∥ < 1/n. So xn − zn → x. Then

∥T (xn − zn)− T (x)∥ ≤ ∥T∥∥xn − x− zn∥ → 0.

Thus, T (xn − zn) = T (xn) → T (x). And also T (xn − zn) = T (xn) = yn → y. Together, these imply

T (x) = y. So G is closed, and the claim holds.

By the closed graph theorem, G is bounded so there exists some δ > 0 such that G(B(0, δ)) ⊆
B(0, 1) in X/ ker(T ). Now, let y ∈ B(0, δ) so then [x] = G(y) ∈ B(0, 1). Thus, if infz∈ker(T ) ∥x−z∥ <
1, then there exists some z0 ∈ ker(T ) such that ∥x − z0∥ < 1. This implies y = Tx = T (x − z0) ∈
T (B(0, 1)) so B(0, δ) ⊆ T (B(0, 1)).

Problem 8. Let Y be a closed subspace of a Banach space X, with norm ∥ · ∥. Let ∥ · ∥1 be a norm

on Y which is equivalent to ∥ · ∥, meaning that there is a C ≥ 1 so that

1

C
∥y∥1 ≤ ∥y∥ ≤ C∥y∥1 for all y ∈ Y.

Let S be the set of all linear functions ϕ : X → R, so that

(i) |ϕ(y)| ≤ ∥y∥1 for all y ∈ Y , and

(ii) |ϕ(x)| ≤ C∥x∥ for all x ∈ X.

Prove the following statements

(a) ∥x∥2 := supϕ∈S |ϕ(x)|, x ∈ X, defines a norm on X.

Proof. Easy to check.

(b) ∥y∥2 = ∥y∥1 for y ∈ Y .

Proof. Since |ϕ(y)| ≤ ∥y∥1 then ∥y∥2 ≤ ∥y∥1.
On the other hand, from the Hahn-Banach separation theorem, for all y ̸= 0, there exists some

ϕ ∈ X∗ such that ∥ϕ∥ = 1 and ϕ(y) = ∥y∥1 so ∥y∥2 ≥ ∥y∥1.
To check that ϕ ∈ S: |ϕ(y)| = ∥y∥1 and |ϕ(x)| ≤ ∥ϕ∥∥x∥ = ∥x∥.

(c) The norms ∥ · ∥2 and ∥ · ∥ are equivalent on X.

Proof. We just need to consider this on X\Y . For x ∈ X\Y , we have

∥x∥2 = sup
ϕ∈S

|ϕ(x)| ≤ C∥x∥.
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Again by Hahn-Banach, for x̃ ̸= 0, there exists some ϕ ∈ X∗ such that ϕ(x̃) = ∥x̃∥ and ∥ϕ∥ = 1.

Define ψ = 1
Cϕ so ∥ψ∥ = 1

C .

Then to see ψ ∈ S:

• |ψ(x)| ≤ 1
C ∥x∥ ≤ C∥x∥ for all x ∈ X

• |ψ(y)| ≤ 1
C ∥y∥ ≤ ∥y∥1 for all y ∈ Y

So ψ ∈ S and ∥x̃∥ ≥ |ψ(x̃)| = 1
C ∥x̃∥ so 1

C ∥x∥ ≤ ∥x∥2 ≤ C∥x∥.

Problem 9. Let f be increasing on [0, 1] and let

g(x) = lim sup
h→0

f(x+ h)− f(x− h)

2h
, for 0 < x < 1.

Prove that if A = {x ∈ (0, 1) | g(x) > 1} then

f(1)− f(0) ≥ m∗(A).

Proof. For x ∈ A,

lim sup
h→0

f(x+ h)− f(x− h)

2h
> 1

so for all ϵ > 0, there exists some h > 0 such that 2h < ϵ and f(x+h)−f(x−h)
2h > 1 if and only if

f(x+ h)− f(x− h) > 2h.

Let I = {(x − h, x + h) | x ∈ A, 2h < ϵ, (x − h, x + h) ⊆ [0, 1]}. Then I covers A in the sense

of Vitali. By Vitali’s Lemma, for every ϵ > 0, there exists I1, I2, . . . , In disjoint from I such that

m∗ (A\
⋃n

i=1 Ii) < ϵ.

Since m∗(A) = m∗ (A\
⋃n

i=1 Ii) + m∗ (
⋃n

i=1 Ii) for all Ii then write Ii = (xi − hi, xi + hi) and

x1 − h1 < x1 + h1 < x2 − h2 < . . . < xn + hn. Then

m∗(A) < ϵ+

n∑
i=1

2hi < ϵ+

n∑
i=1

|f(xi + hi)− f(xi − hi)|.

Since f is increasing,
∑n

i=1

(
f(xi + hi)− f(xi − hi)

)
≤ f(1)− f(0).

So m∗(A) < ϵ+ f(1)− f(0) so m∗(A) ≤ f(1)− f(0).

Problem 10. (a) State a version of the Stone-Weierstrass Theorem.

Proof. See textbook.

(b) Let A be a uniformly dense subspace of C[0, 1] and let
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B =

{
F (x) | F (x) =

∫ x

0

f(t)dt, 0 ≤ x ≤ 1, f ∈ A

}
.

Prove that B is uniformly dense in

C0[0, 1] := {g ∈ C[0, 1] | g(0) = 0}.

Proof. Define B′ = {F (x) | F (x) =
∫ x

0
f(t)dt, 0 ≤ x ≤ 1, f ∈ C[0, 1]}. First show B is dense in

B′.

For every F ∈ B′, G = B, F (x) =
∫ x

0
f(t)dt and G(x) =

∫ x

0
g(t)dt. Then

∥F (x)−G(x)∥∞ ≤
∫ 1

0

|f − g|dt ≤ ∥f − g∥∞.

Since A is dense in C[0, 1], then ∥f − g∥∞ < ϵ so ∥F −G∥∞ < ϵ. So B is indeed dense in B′.

Then we will show B′ is an algebra (in order to use Stone-Weierstrass). Let F,G ∈ B′ so

F (x)G(x) =

∫ x

0

f(t)dt

∫ x

0

g(s)ds =

∫ x

0

∫ x

0

f(t)g(s)dsdt =

∫ x

0

F (t)g(t)+G(t)f(t)dt =

∫ x

0

∫ t

0

f(s)g(t)+g(s)f(t)dsdt.

Since F (t)g(t) +G(t)f(t) ∈ C[0, 1] then FG ∈ B′.

Also, x =
∫ 1

0
1dt ∈ B′ so B′ separates points.

By Stone-Weierstrass, B′ is dense in C0[0, 1] since any function F ∈ B′, F (0) = 0. So B is dense

in C0[0, 1].

(c) Prove that the span of {sin(nx) | n ∈ N} is dense in C0[0, 1].

Proof. sin(nx) =
∫ x

0
n cos(nx)dt. From part (b), it is sufficient to show

A = span{n cos(nx)} = span{cos(nt)}

is dense in C[0, 1]. A is an algebra:

• cos(nt) cos(mt) = 1
2

(
cos((m+ n)t) + cos((m− n)t)

)
∈ A

• cos(t) separates [0, 1] (since 1 < π/2) so A is dense in C[0, 1].

19 January 2015

Problem 1. Let f ∈ L1(R). If

∫ b

a

f(x)dx = 0
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for all rational numbers a < b, prove that f(x) = 0 for almost all x ∈ R.

Proof. Let E+ := {x | f(x) > 0}. Assume m(E+) > 0 (the same argument will show E− := {x |
f(x) < 0} has measure zero).

There exists some n such that E+ ∩ [n, n+1] has positive measure. Consider F closed in R and F ⊆
E+ ∩ [n, n+ 1] with m(F ) > 0. Then [n, n+ 1]\F is open in [n, n+ 1]. Thus, [n, n+ 1]\F =

⋃∞
n=1 In

for In being disjoint open intervals in [n, n+ 1].

For all In = (an, bn), there exists some (ani
)i, (bni

)i ⊆ Q such that ani
→ an and bni

→ bn. Since

∫ bn

an

f(x)dx =

∫
R
f(x)χ[an,bn]dx lim

i
f(x)χ[ani

,bni
] = f(x)χ[an,bn]

then |f(x)χ[ani
,bni

] ≤ |f(x)| ∈ L1 so by Dominated Convergence Theorem,
∫ bn
an
f(x)dx = 0.

Since
∫
F
f(x)dx > 0, by condition we know

∫ n+1

n
f(x)dx = 0 for all n. So then

∫
[n,n+1]\F f(x)dx <

0.

So there exists some Im = (am, bm) such that
∫
Im
f(x)dx < 0. Contradiction!

Proof #2 as in Problem 3 from August 2014, not restricted to rationals with f ∈ L1.

For every open U , write U =
⋃∞

n=1(an, bn) for disjoint open intervals, so

∫
U

f(x)dx =

∞∑
n=1

∫ bn

an

f(x)dx = 0.

For every compact K ⊆ (a, b) then (a, b)\K is open in R and

∫
K

f(x)dx =

∫ b

a

f(x)dx−
∫
(a,b)\K

f(x)dx

(because each is finite). Suppose E+ = {x | f(x) > 0} has positive measure. Since E+ =
⋃

nEn

where En = {x | f(x) > 1/n} so there must exist some n such that m(En) > 0.

By inner regularity, there exists some K ⊆ En with m(K) > 0. Then

0 =

∫
K

f(x)dx >

∫
K

1

n
dx =

1

n
m(K) > 0

Contradiction!

Problem 2. Let {gn}∞n=1 and g be in L1(R) and satisfy

lim
n→∞

∥gn − g∥1 = 0.
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Prove that there is a subsequence of {gn}∞n=1 that converges pointwise almost everywhere to g.

Proof. Step 1: Suppose gn → g in L1. Let En,ϵ = {x | |fn(x)− f(x)| ≥ ϵ}. Then

∫
|fn − f | ≥

∫
En,ϵ

|fn − f | ≥ ϵµ(En,ϵ)

So then µ(En,ϵ) ≤ 1
ϵ

∫
|fn − f | → 0.

Step 2: We will show that if gn → g in measure, then there exists a subsequence that converges to g

pointwise almost everywhere.

Suppose for every ϵ > 0, µ({x | |fn(x)− f(x)| ≥ ϵ}) → 0. Choose a subsequence {gnk
} such that if

Ej = {x | |gnj (x)− gnj+1(x)| > 2−j}

satisfies µ(Ej) < 2−j . Let Fk =
⋃∞

j=k Ej so µ(Fk) ≤
∑∞

j=k 2
−j ≤ 21−k. Let F =

⋂
k Fk so µ(F ) = 0.

For x /∈ Fk and for i ≥ j ≥ k then

|gni
(x)− gnj

(x)| ≤
i−1∑
ℓ=j

|gnℓ
(x)− gnℓ+1

(x)| ≤
i−1∑
ℓ=j

2ℓ ≤ 2−j → 0 as k → ∞.

So gnk
is pointwise Cauchy on x /∈ F , so let

f(x) =

{
lim gnk

(x) x /∈ F

0 otherwise

So gnk
→ f almost everywhere and gn → f in measure since

µ({x | |gn(x)− f(x)| ≥ ϵ}) ≤ µ({x | |gn(x)− gnℓ
(x)| ≥ ϵ/2})︸ ︷︷ ︸

→0

+µ({x | |gnℓ
(x)− f(x)| ≥ ϵ})︸ ︷︷ ︸

→0

and

µ({x | |f(x)− g(x)| ≥ ϵ}) ≤ µ({x | |f(x)− gn(x)| ≥ ϵ/2}︸ ︷︷ ︸
→0

+µ({x | |gn(x)− g(x)| ≥ ϵ/2})︸ ︷︷ ︸
→0

so f = g almost everywhere. Thus, {gnk
} converges to g almost everywhere.

Problem 3. Let (X,M, µ) be a measure space with µ(X) < ∞. Let N ⊆ M be a σ-algebra. If f ≥
0 is M-measurable and µ-integrable then prove that there exists an N -measurable and µ-integrable

function g ≥ 0 so that

102



19 JANUARY 2015 Texas A&M

∫
E

gdµ =

∫
E

fdµ, E ∈ N .

Proof. Define ν(E) =
∫
E
fdµ a finite positive measure on (X,N , µ). Then since µ(E) = 0, ν(E) = 0

so ν ≪ µ.

Then by Radon-Nikodym Theorem, there exists some g : X → [0,∞) and N -measurable and g ∈
L1(µ) such that ν(E) =

∫
E
gdµ. Then

ν(E) =

∫
E

fdµ =

∫
E

gdµ ∀E ∈ N .

Note: Folland doesn’t mention positive but there are other versions that give positive.

Problem 4. (a) State the closed graph theorem.

Proof. See wikipedia.

(b) If H is a Hilbert space and T : H → H is a linear operator satisfying

⟨Tx, y⟩ = ⟨x, Ty⟩, x, y ∈ H,

then prove that T is bounded.

Proof. Let xn → x and Txn → y. We want to show Tx = y.

⟨Txn, z⟩︸ ︷︷ ︸
→⟨y,z⟩

= ⟨xn, T z⟩ → ⟨x, Tz⟩ = ⟨Tx, z⟩.

So ⟨Tx− y, z⟩ = 0 for all z ∈ H so then Tx− y = 0 and so Tx = y.

Problem 5. Let f, g ∈ L1(R). Prove that h ∈ L1(R), where h(x) is defined by

h(x) =

∫
R
f(y)g(x− y)dy

whenever this integral is finite.

Proof. We want to show that
∫
R |h(x)|dx =

∫
R
∣∣∫

R f(y)g(x− y)dy
∣∣ dx <∞. Indeed,
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∫
R

∣∣∣∣∫
R
f(y)g(x− y)dy

∣∣∣∣ dx ≤
∫
R

∫
R
|f(y)||g(x− y)|dydx

=

∫
R
|f(y)|

(∫
R
|g(x− y)|dx

)
dy

=

∫
R
|f(y)|∥g∥1dy

= ∥g∥1
∫
R
|f(y)|dy

= ∥g∥1∥f∥1 <∞.

Problem 6. Let f, g ∈ C[0, 1] with f(x) < g(x) for all x ∈ [0, 1].

(a) Prove that there is a polynomial p(x) so that

f(x) < p(x) < g(x), x ∈ [0, 1].

Proof. Let ϵ = inf{g(x)− f(x) | x ∈ [0, 1]}. Since h(x) = g(x)− f(x) > 0 on [0, 1] and attains a

minimum on the compact set [0, 1] then the inf is attained and thus is positive. So ϵ > 0.

By Stone-Weierstrass, polynomials are dense in C[0, 1] so there exists a polynomial p(x) such

that
∥∥∥p− ( f+g

2

)∥∥∥
∞
< ϵ/2. Then

p(x) <
f(x) + g(x)

2
+
ϵ

2
≤ 1

2

(
f(x) + g(x) + (g(x)− f(x))

)
=

1

2
(2g(x)) = g(x).

p(x) >
f(x) + g(x)

2
− ϵ

2
>

1

2

(
f(x) + g(x)− (g(x)− f(x))

)
=

1

2
(2f(x)) = f(x).

So f(x) < p(x) < g(x).

Remark: Let M = max{g(x)− f(x)} then

|g(x)− f(x)| ≤
∣∣∣∣g(x)− (f + g

2

)
(x)

∣∣∣∣+ ∣∣∣∣(f + g

2

)
(x)− p(x)

∣∣∣∣ < M

2
+ ϵ.

Alternative Proof. Let M := minx∈[0,1] g(x)− f(x). By Stone-Weierstrass, there exists some p̃(x)

polynomial such that ∥p̃(x)− g(x)∥∞ < M/3. Let p(x) = p̃(x)−M/2. Then

g(x)− p(x) = g(x)− p̃(x) +
M

2
>

−M
3

+
M

2
=
M

6
> 0.

p(x)−f(x) = p(x)−g(x)+g(x)−f(x) = p̃(x)−g(x)−M
2
+
(
g(x)−f(x)

)
>

−M
3

−M
2
+M =

M

6
> 0.

So f(x) < p(x) < g(x).
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(b) Prove that there is an increasing sequence of polynomial {pn(x)}∞n=1 so that

f(x) < pn(x) < g(x), x ∈ [0, 1],

and pn → g uniformly on [0, 1].

Proof. Find p1 such that g − 1
2 < p1 < g with

∥∥p1 − ( g+g−1
2

)∥∥ < 1
4 . Then |g(x) − p1(x)| <

1
4 + 1

4 = 1
2 .

Recursively find a polynomial pn such that pn−1 < pn < g with
∥∥∥pn −

(
g+pn−1

2

)∥∥∥ < 1
2n−1 ,

implying

|g(x)− pn(x)| <
Mn−1

2
+

1

2n+1
=

1

2n+1
+

1

2n+1
=

1

2n
.

So Mn <
1
2n . Then for every ϵ > 0 choose N such that 1

2N
< ϵ, so for all n > N

|pn(x)− g(x)| < 1

2N
< ϵ ∀x ∈ [0, 1].

Alternative Proof. From part (a) we can find f(x) < p1(x) < g(x). Repeating, we can find

p1(x) < p2(x) < g(x). By requiring ϵn instead of M , in ∥p̃(x) − g(x)∥∞ < ϵ and letting ϵn → 0,

we get

∥pn(x)− g(x)∥∞ ≤ ∥pn(x)− p̃n(x)∥∞ + ∥p̃n(x)− g∥∞ <
ϵn
2

+
ϵn
3

=
5

6
ϵn → 0.

Problem 7. If f ∈ L2(R), g ∈ L3(R), and h ∈ L6(R) then prove that the product fgh is in L1(R).

Proof. Note:
∥∥|f |k∥∥

p
=
(∫

|f |kpdx
)1/p

=
(∫

|f |kpdx
) 1

kpp = ∥f∥pkp.

Then it follows that

∥fgh∥1 ≤ ∥f∥2∥gh∥2 ≤ ∥f∥2∥|g|2|h|2∥1/21 ≤ ∥f∥2
(
∥|g|2∥p=3/2∥|h|2∥q=3

)1/3 ≤ ∥f∥2
(
∥g∥3∥h∥6

)1/3
<∞.

Where we use p = 3/2, q = 3 so 1
p + 1

q = 2
3 + 1

3 = 1.

Problem 8. (a) A point y in a metric space Y is isolated if the set {y} is both open and closed in

Y . Prove that y ∈ Y is isolated if and only if the complement {y}C is not dense in Y .

Proof. ⇒) If y is isolated, then {y} is open. But {y}c ∩ {y} = ∅ so {y}c is not dense.

⇐) Trivially, {y} is closed since we’re in a metric space. Suppose {y}c is not dense in Y . Then

there exists an open U ̸= ∅ such that U ∩ {y}c = ∅ (since A is dense in Y ⇔ for all open U ̸= ∅,
U ∩A ̸= ∅).

But if U ∩ {y}c = ∅ then U ⊆ {y}cc = {y} so U = {y} is open.
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(b) Let X be a countable nonempty complete metric space. Prove that the set of isolated points is

dense in X.

Proof. Let Y ⊆ X be the set of isolated points. Let X\Y = {zj}∞j=1 (or {zj}nj=1).

Since the singleton {zk} is not an isolated point, by (a) we know {zk}c is dense in X, so {zk}c =
X. So each {zk}c is open and dense in X.

By Baire-Category, Y =
⋂∞

j=1{zj}c (or
⋂n

j=1{zj}c) is also dense in Y .

Problem 9. Suppose that f ∈ Lp(R) for all p ∈ (1, 2) and that supp∈(1,2) ∥f∥p < ∞. Prove that

f ∈ L2(R) and that

lim
p→2−

∥f∥p = ∥f∥2.

Proof. Let A = {x | |f(x)| ≥ 1}, B = {x | |f(x)| < 1}. Then by Monotone Convergence Theorem,∫
A
|f |pdx↗

∫
A
|f |2dx.

Let pn ↑ 2. WLOG assume p1 = 3/2. We know on B, |f |p ≤ |f |3/2 ∈ L1(B). By Dominated

Convergence Theorem,
∫
B
|f |pdx→

∫
B
|f |2dx which implies

∫
R |f |pdx→

∫
R |f |2dx.

Therefore, ∥f∥pp → ∥f∥22 so ∥f∥p/2p → ∥f∥2 as p→ 2.

Also, since M = supp∈(1,2) ∥f∥p <∞, then ∥f∥p/2−1
p ≤Mp/2−1 for all p ∈ (1, 2).

Then Mp/2−1 → 1 as p→ 2 which implies ∥f∥p/2p − ∥f∥p → 0 as p→ 2.

So then, ∥f∥p → ∥f∥2 as p→ 2 and ∥f∥2 <∞ since M <∞.

Problem 10. Let (X, ∥ · ∥) be a normed vector space with a subspace Y and let ∥ · ∥1 be another

norm on Y that satisfies

1

K
∥y∥1 ≤ ∥y∥ ≤ K∥y∥1, y ∈ Y,

where K > 1 is a fixed constant. Define S to be the set of linear functionals ϕ : X → R satisfying

(i) |ϕ(y)| ≤ ∥y∥1, y ∈ Y ,

(ii) |ϕ(x)| ≤ K∥x∥, x ∈ X.

Prove the following statements:

(a) ∥x∥2 := sup{|ϕ(x)| | ϕ ∈ S} defines a norm on X.

Proof. See August 2015

(b) For y ∈ Y , ∥y∥1 = ∥y∥2.

Proof. See August 2015

106



20 AUGUST 2014 Texas A&M

(c) The norms ∥ · ∥ and ∥ · ∥2 are equivalent on X.

Proof. See August 2015

20 August 2014

Problem 1. For n ∈ N, let fn : [0, 1] → R be continuous, and assume that for every x ∈ [0, 1]

the sequence (fn(x)) is decreasing. Suppose that fn converges pointwise to a continuous function f .

Show that this convergence is uniform.

Proof. WLOG: by replacing fn by fn(x)− f(x), these are still continuous and decreasing pointwise.

So we want to prove fn ⇒ 0.

This is precisely Dini’s Theorem (aka freebie question).

Fix ϵ > 0 and let Un = f−1
n ((−1, ϵ)) = {x ∈ X | gn(x) < ϵ} which is open. Then for all x, fn(x) ↘ 0

so there exists N such that for all n ≥ N , |fn(x)| < ϵ which implies x ∈ Un.

So [0, 1] =
⋃

n Un. By compactness of [0, 1], there exists a finite subcover Un1
, Un2

, . . . , Unk
for n1 <

n2 < . . . < nk but since Un ⊆ Un+1 then Un1 ⊆ Un2 ⊆ . . . ⊆ Unk
.

Therefore, [0, 1] ⊆ Unk
=: UN so for all x ∈ [0, 1], then x ∈ f−1

N ((−1, ϵ)) ⇔ |fN (x)| < ϵ.

Decreasing fn implies that for all n ≥ N , |fn(x)| < ϵ for all x ∈ [0, 1].

Problem 2. Let f ∈ L1(0,∞). For x > 0, define

g(x) =

∫ ∞

0

f(t)e−txdt.

Prove that g(x) is differentiable for x > 0 with derivative

g′(x) =

∫ ∞

0

−tf(t)e−txdt.

Proof. Since

∫ ∞

0

∫ x

0

|tf(t)e−ty|dydt =
∫ ∞

0

t|f(t)|
(∫ x

0

e−tydy

)
dt =

∫ ∞

0

−e−tx︸ ︷︷ ︸
≤1

|f(t)|dt+
∫ ∞

0

|f(t)|dt ≤ 2

∫ ∞

0

|f(t)|dt <∞.

By Fubini, h(x) =
∫∞
0

∫ x

0
−tf(t)e−tydtdy =

∫∞
0
f(t)e−txdt+ c.

So h(x) = g(x) + c.

From the definition of h, we know h′(x) = g′(x) and thus g(x) is differentiable. And h is differen-

tiable since it’s absolutely continuous.
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Problem 3. Let f : R → R be a Lebesgue integrable function such that

∫ b

a

f(x)dx = 0 for every a < b.

Show that f(x) = 0 for almost every x ∈ R.

Proof. See question 1 from January 2015.

Problem 4. Let f be Lebesgue measurable on [0, 1] with f(x) > 0 a.e. Suppose (Ek) is a sequence

of measurable sets in [0, 1] with the property that
∫
Ek
f(x)dx→ 0 as k → ∞.

Prove that m(Ek) → 0 as k → ∞.

Proof. Let Fm = {x | f(x) ≥ 1/m} so Fn ⊆ Fn+1.

Since f(x) > 0 almost everywhere, then

m

( ∞⋃
n=1

Fn

)
= lim

n
m(Fn) = 1.

Fix ϵ > 0, so there exists N such that m(F c
n) < ϵ/2 for n ≥ N . Now,

1

N
m(Ek ∩ FN ) ≤

∫
Ek∩FN

f(x)dx ≤
∫
Ek

f(x)dx→ 0 as k → ∞.

So there exists some K such that m(Ek ∩ FN ) < ϵ/2 for all k ≥ K. Thus,

m(Ek) = m(EK ∩ FN ) +m(Ek ∩ F c
N ) <

ϵ

2
+
ϵ

2
= ϵ ∀k ≥ K.

Problem 5. Let (fn) be a sequence of continuous functions on [0, 1] such that for each x ∈ [0, 1]

there is an N = Nx so that

fn(x) ≥ 0 for all n ≥ Nx.

Show that there is an open nonempty set U ⊂ [0, 1] and an N ∈ N, so that fn(x) ≥ 0 for all n ≥ N

and all x ∈ U .

Proof. Let

En := {x | fm(x) ≥ 0 ∀m ≥ n} =

∞⋂
n=m

{x | fn(x) ≥ 0}
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so En is closed and En ⊇ En+1. For all x ∈ [0, 1] there exists N = Nx such that fm(x) ≥ 0 for all

m ≥ N . Thus, x ∈ EN .

Then, [0, 1] =
⋃∞

n=1En. Since [0, 1] is compact, by Baire-Category we know there exists N such

that EN
◦ ̸= ∅ (i.e. E◦

N ̸= ∅).

Let U = E◦
N be open, non-empty so for all x ∈ U , fn(x) ≥ 0 for all n ≥ N .

Problem 6. (a) Define the w∗-topology on the dual X∗ of a Banach space X.

Proof. See wikipedia!

(b) Let X be an infinite dimensional Banach space. What is the w∗-closure of

SX∗ = {x∗ ∈ X∗ | ∥x∗∥ = 1}?

(as usual, prove your answer.)

Proof. Claim: SX∗
w∗

= BX∗ .

We know for any x1, x2, . . . , xn ∈ X, there exists some x∗0 ̸= 0 such that x∗0(xi) = 0. Indeed,

if this were not true then otherwise, x∗0(xi) ̸= 0 for some i, let φ : X∗ → Rn be φ(x∗) =

(x∗(x1), . . . , x
∗(xn)) then φ is injective so dim(X∗) ≤ dim(Rn) = n. Contradiction, so true.

Now for any x∗ ∈ BX∗ , consider it’s neighborhood (open under the w∗-neighborhood)

V =

n⋂
i=1

{y∗ ∈ X∗ | |x̂i(x∗ − y∗)| = |x∗(xi)− y∗(xi)| < ϵ}

for each {xi}ni=1 choose such an x∗0 ̸= 0 from the claim.

Consider the line {x∗ + tx∗0 | t ∈ R} in X∗.

Since for any x̂i,

x̂i(x
∗ + tx∗0 − x∗) = tx̂i(x

∗
0) = tx∗0(xi) = 0 < ϵ.

Then {x∗ + tx∗0 | t ∈ R} ⊆ V . Since ∥x∗ + tx∗0∥ is continuous about t, then we can find t0 such

that ∥x∗ + t0x
∗
0∥ = 1 ⇒ V ∩ SX∗ ̸= ∅.

Since any neighborhood of x∗ contains a neighborhood of the form V as above (i.e. these V ’s

are a neighborhood basis) then BX∗ ⊆ SX∗
w∗

.

On the other hand, for any x∗0 ∈ BX∗ , by Hahn-Banach separation Theorem, we know there

exists x ∈ X and c ∈ R such that x∗(x) < c < x∗0(x) for all x
∗ ∈ BX∗ .

Then for all {x∗n} ⊆ BX∗ , x∗n(x) ≤ c < x∗0(x). Therefore, x
∗
0 isn’t an accumulation point of BX∗

which implies BX∗
w∗

= BX∗ . Thus, SX∗
w∗

⊆ BX∗
w∗

= BX∗ so BX∗ = SX∗
w∗

.

Problem 7. (a) State the Riesz Representation Theorem for the dual L∗
p(µ) of Lp(µ), 1 ≤ p <∞.

Proof. See Wikipedia!
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(b) Let µ be a finite measure on the measurable space (Ω,Σ). Prove the following part of the above

theorem:

If F ∈ L∗
p(µ), then there exists an h ∈ L1(µ) so that

F (χA) =

∫
A

hdµ for all A ∈ Σ.

Proof. Let ν(A) = F (χA). The goal is to show ν is a σ-finite signed measure.

(a) ν(∅) = F (χ∅) = F (0) = 0

(b) Let {Ei} be disjoint, let E =
⋃∞

i=1Ei. Then

ν(E)−
n∑

i=1

ν(Ei) = F (χE)− F

(
n∑

i=1

χi

)

≤ ∥F∥L∗
p

∥∥∥∥∥χE −
n∑

i=1

χi

∥∥∥∥∥
p

≤ ∥F∥L∗
p

∥∥∥∥∥
∞∑

i=n+1

χi

∥∥∥∥∥
p

= ∥F∥L∗
p
µ

( ∞⋃
i=n+1

Ei

)1/p

→ 0 as n→ ∞.

Therefore, ν(E) =
∑∞

i=1 ν(Ei).

When µ(A) = 0, then

ν(A) = F (χA) ≤ ∥F∥L∗
p
∥χA∥p = ∥F∥L∗

p
µ(A)1/p = 0.

So ν ≪ µ.

Then from the Radon-Nikodyn Theorem, there exists some h ∈ L1(µ) such that ν(A) =
∫
A
hdµ.

So

F (χA) = ν(A) =

∫
A

hdµ.

Problem 8. Assume that (xn) is a weakly converging sequence in a Hilbert space H. Show that

there is a subsequence (yn) of (xn) so that

1

n

n∑
j=1

yj

converges in norm.
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Proof. WLOG xn → 0 weakly (⟨xn, y⟩ → ⟨0, y⟩ for all y ∈ H) and we know ∥xn∥ is bounded,

supn ∥xn∥ ≤ C. For n > m,

∥∥∥∥∥∥ 1

m

m∑
j=1

yj −
1

n

n∑
j=1

yj

∥∥∥∥∥∥
2

=

〈
1

m

m∑
j=1

yj −
1

n

n∑
j=1

yj ,
1

m

m∑
j=1

yj −
1

n

n∑
j=1

yj

〉

=

〈(
1

m
− 1

n

) m∑
j=1

yj −
1

n

n∑
j=m+1

yj ,

(
1

m
− 1

n

) m∑
j=1

yj −
1

n

n∑
j=m+1

yj

〉

≤
(

1

m
− 1

n

)2
∥∥∥∥∥∥

m∑
j=1

yj

∥∥∥∥∥∥
2

+ 2

∣∣∣∣∣∣
〈(

1

m
− 1

n

) m∑
j=1

yj ,
1

n

n∑
j=m+1

yj

〉∣∣∣∣∣∣+
(
1

n

)2
∥∥∥∥∥∥

n∑
j=m+1

yj

∥∥∥∥∥∥
2

.

Now by induction, we can choose yj such that |⟨yj ,
∑m

n=1 yn⟩| < 2−j for all m ≤ j − 1. Pick y1
randomly.

Since ⟨xn, y⟩ → ⟨0, y⟩ for all y ∈ H, then we can find y2 such that ⟨y2, y1⟩ < 2−2.

Similarly, find y3 such that ⟨y3, y1 + y2⟩ < 2−3 and ⟨y3, y1⟩ < 2−3, etc. Then

∥∥∥∥∥∥
m∑
j=1

yj

∥∥∥∥∥∥
2

=

〈
m∑
j=1

yj ,

m∑
j=1

yj

〉
= ⟨ym, ym⟩+⟨ym,

m−1∑
j=1

yj⟩+. . .+⟨y1, y1⟩ ≤
m∑
j=1

∥yj∥2+
m∑
j=1

2−j <

m∑
j=1

∥yj∥2+2.

Therefore,

(
1

m
− 1

n

)2
∥∥∥∥∥∥

m∑
j=1

yj

∥∥∥∥∥∥
2

≤ 1

m2

 m∑
j=1

∥yj∥2 + 2

 <
1

m2
(mc+ 2) → 0 as m→ ∞.

Similar argument holds for
(
1
n

)2 ∥∥∥∑n
j=m+1 yj

∥∥∥2.
Finally,

∣∣∣∣∣∣
〈(

1

m
− 1

n

) m∑
j=1

yj ,
1

n

n∑
j=m+1

yj

〉∣∣∣∣∣∣ ≤ 1

n

(
1

m
− 1

n

) n∑
j=m+1

〈
yj ,

m∑
k=1

yk

〉

≤ 1

n

(
1

m
− 1

n

) n∑
j=m+1

2−(m+1)

≤ 1

n

(
1

m
− 1

n

)
→ 0
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So then
∥∥∥ 1
m

∑m
j=1 yj −

1
n

∑n
j=1 yj

∥∥∥2 → 0 as n,m→ ∞ so it’s Cauchy and therefore converges.

Problem 9. Show that a linear functional ϕ on a Banach space X is continuous if and only if {x ∈
X | ϕ(2x) = 3} is norm closed.

Proof. ⇒) A = {x | ϕ(2x) = 3)} = {x | 2x ∈ ϕ−1({3})}. Let ψ(x) = ϕ(2x) so A = ψ−1(ϕ−1({3})).

⇐) We want to show ker(ϕ) is closed. Note that {x ∈ X | ϕ(2x) = 3} = {x ∈ X | ϕ(x) = 3/2}.

Pick some a ∈ X such that ϕ(a) = 3/2. Then clearly

a+ ker(ϕ) ⊆ {x ∈ X | ϕ(x) = 3/2}

and if ϕ(x) = 3/2 then ϕ(x− a) = 0 so x = a+ (x− a) ∈ a+ ker(ϕ).

Thus, a+ker(ϕ) = {x ∈ X | ϕ(2x) = 3}. Therefore ker(ϕ) = {x ∈ X | ϕ(2x) = 3}−a which is closed.

Then

ϕ′ : X/ ker(ϕ) → R
x+ ker(ϕ) 7→ ϕ(x)

is an isomorphism. Let π : X → X/ kerϕ which is also continuous, so ϕ = ϕ′ ◦ π is continuous.

Problem 10. Let C1[0, 1] be the space of functions f ∈ C[0, 1] such that f ′ exists and is continuous

in [0, 1]. The space C1[0, 1] is given the supremum norm. Define T : C1[0, 1] → C[0, 1] by Tf =

f ′ for f ∈ C1[0, 1]. Show that T has a closed graph and that T is not bounded. Decide if C1[0, 1]

(together with the supremum norm) is a Banach space or not. (Explain your answer).

Proof. Let fn → f and Tfn → f ′n → g in ∥ · ∥∞.

fn(x) =

∫ x

0

f ′n(t)dt+ fn(0) f(x) =

∫ x

0

f ′(t)dt+ f(0)

Since fn → f then fn(0) → f(0). Let G =
∫ x

0
g(t)dt+ f(0). Then

∥f −G∥ ≤ ∥f − fn∥+ ∥fn −G∥ ≤ ∥f − fn∥+
∫ x

0

∥fn − g∥∞ ≤ ∥f − fn∥+ ∥fn − g∥∞ → 0.

So f ′ = g meaning T has a closed graph.

To see T is not bounded, consider fn = xn so ∥fn∥∞ = 1 but ∥Tfn∥ = ∥nxn−1∥∞ = n→ ∞.

Thus, by the closed graph theorem, C1[0, 1] is not a Banach space.
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21 January 2014

Problem 1. Let (X,M, µ) be a non atomic measure space with µ(X) > 0. Show that there is a

measurable f : X → [0,∞), for which

∫
f(x)dµ(x) = ∞.

Proof. Take X = E1 ⊇ E2 ⊇ E3 ⊇ . . . such that µ(E1) > µ(E2) > . . . > 0. Define

f(x) =

{
µ(En\En+1)

−1 if x ∈ En\En+1

0 if x ∈
⋂∞

n=1En

Then
∫
f(x)dx =

∑∞
n=1 1 = ∞.

Problem 2. Assume that µ is a finite measure on Rn. Prove that there is a closed set A ⊂ Rn with

the property that for each closed B ⊊ A it follows that µ(A\B) ̸= 0.

Proof. Since Rn is second countable there is some countable basis Uj for Rn. Let

A := Rn\
⋃

{Uj : µ(Uj) = 0}.

Of course µ(Ac) = 0 (here we use second countable). Consider a closed subset B ⊂ A. If µ(A\B) =

0, then in fact µ(Bc) = 0. Yet Bc is an open set, so if

Bc =

∞⋃
k=1

Ujk

for some (Ujk) then µ(Ujk) = 0 for all k. This implies

Ujk ⊂ Ac ∀k ⇒ Bc ⊂ Ac ⇒ A ⊂ B ⇒ A = B.

So if B ⊊ A, µ(A\B) ̸= 0 by contrapositive.

Problem 3. For a nonnegative function f ∈ L1([0, 1]), prove that

lim
n→∞

∫ 1

0

n
√
f(x)dx = m({x | f(x) > 0}).

Proof. Let

E1 = {x | f(x) ≥ 1}
E2 = {x | 0 < f(x) < 1}
E3 = {x | f(x) = 0}
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Then

∫ 1

0

f(x)1/ndx =

∫
E1

f(x)1/ndx+

∫
E2

f(x)1/ndx+

∫
E3

f(x)1/ndx

For the first integral on E1, limn f(x)
1/ndx = 1 and |f(x)1/n| ≤ |f(x)| ∈ L1, so by DCT,

∫
E1
f(x)1/ndx =∫

E1
dx = m(E1).

For the second integral on E2, limn f(x)
1/n = 1 and |f(x)1/n| ≤ 1 ∈ L1 so again by DCT,

∫
E2
f(x)1/ndx =∫

E2
dx = m(E2). Therefore,

∫ 1

0

f(x)1/ndx = m(E1) +m(E2) = m({x | f(x) > 0}).

Problem 4. Let f be Lebesgue integrable on (0, 1). For 0 < x < 1 define

g(x) =

∫ 1

x

t−1f(t)dt.

Prove that g is Lebesgue integrable on (0, 1) and that

∫ 1

0

g(x)dx =

∫ 1

0

f(x)dx.

Proof. Notice that

∫ 1

0

|g(x)| dx ≤
∫ 1

0

∫ 1

x

t−1|f(t)| dt dx Tonelli
=

∫ 1

0

∫ t

0

t−1|f(t)|dtdx =

∫ 1

0

|f(t)|dt <∞

since f ∈ L1(0, 1). So then by Fubini,

∫ 1

0

g(x)dx =

∫ 1

0

∫ 1

x

t−1f(t)dtdx =

∫ 1

0

∫ t

0

t−1f(t)dxdt =

∫ 1

0

f(t)dt.

Problem 5. Assume that ν and µ are two finite measures on a measurable space (X,M). Prove

that

ν ≪ µ⇔ lim
n→∞

(ν − nµ)+ = 0.

Proof. ⇒) Note that ν − (n + 1)µ < ν − nµ for all n since µ is positive. Hence if Pn is the positive

set for ν − nµ, Pn+1 ⊂ Pn, and furthermore the positive set P of limn→∞(ν − nµ) ⊂
⋂∞

n=1 Pn (note

that this limit exists as a signed measure, so Hahn decomposition is possible). Since limn→∞(ν −
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nµ)(P ) ̸= 0, (ν − nµ)(P ) ̸= 0 for all n, which implies that ν(P ) > nµ(P ) for all n. But since ν is

finite, µ(P ) = 0 while ν(P ) ̸= 0. Hence ν ̸≪ µ.

⇐) Let µ(E) = 0. Then for all ϵ > 0, there exists some N such that for all n ≥ N ,

ϵ > (ν − nµ)+(E) ≥ (ν − nµ)(E) = ν(E)− nµ(E) ≥ ν(E).

Letting ϵ approach 0, we have that ν(E) = 0 so that ν ≪ µ.

Problem 6. Let (pn) be a sequence of polynomials which converges uniformly on [0, 1] to some

function f , and assume that f is not a polynomial. Prove the limn→∞ deg(pn) = ∞, where deg(p)

denotes the degree of a polynomial p.

Proof. We proceed by contrapositive. Assume there exists some subsequence (pnk
) such that deg(pnk

) ≤
M for all M . Then Pn := {a0 + a1x + · · · + anx

n : ai ∈ C} is a finite-dimensional vector space and

hence is complete. So it is closed, and since pnk
→ f , f ∈ Pn.

Alternative proof. Assume to the contrary and consider the space P = span{1, x, x2, . . . , xm} with

(pn) ⊆ P. Since {1, x, . . . , xm} are basis elements and P is finite dimensional, then any two norms

are equivalent on P and so if P =
∑∞

k=0 akx
k, we can consider the two norms defined by

∥P∥1 := sup |ak| ∥P∥2 := sup
x∈[0,1]

|P (x)|

Since ∥pnk
− pnℓ

∥2 → 0, then ∥pnk
− pnℓ

∥1 → 0 so {ank
} is Cauchy. Hence, P =

∑m
ℓ=0 aℓx

ℓ where

aℓ = limk a
ℓ
nk

is a polynomial of degree at most m and pn converges uniformly to p. So therefore,

p = f . Contradiction!

Problem 7. Let (fn) be sequence of non zero bounded linear functionals on a Banach space X.

Show that there is an x ∈ X so that fn(x) ̸= 0, for all n ∈ N.

Proof. Let En = {x | fn(x) = 0} which is closed in X. Assume the result is not true, so for every

x ∈ X, there exists some n such that fn(x) = 0 implies x ∈ En, that is, X =
⋃

nEn.

Since X is a Banach space, then by Baire Category Theorem, there exists some n such that ∅ ̸=
E◦

n = E◦
n.

Thus, there exists some r > 0, x ∈ X such that B(r, x) ⊆ En.Then for all y ∈ X,

r
y

∥y∥
+ x ∈ x+B(r, 0) = B(r, x)

so then if fn(r
y

∥y∥ + x) = 0, then r
∥y∥fn(y) = −fn(x) = 0 so fn(y) = 0 so fn = 0.

Thus, by Baire Category,
⋃
Cn ̸= X. Contradiction!
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Problem 8. Assume that T : ℓ1 → ℓ2 is bounded, linear and one-to-one. Prove that T (ℓ1) is not

closed in ℓ2.

Proof. We proceed by contradiction. If T (ℓ1) is closed, then T (ℓ1) is a hilbert space. Since T : ℓ1 →
T (ℓ1) is bijective, by the open mapping theorem. T is open and T−1 is bounded so T is an isomor-

phism. Then ℓ1 ∼= T (ℓ1). But ℓ1 is not reflexive and T (ℓ1) is reflexive, so contradiction.

Problem 9. For a uniformly bounded sequence (fn) in C[0, 1] (i.e. supn∈N supξ∈[0,1] |fn(ξ)| < ∞)

show that fn converges weakly to 0 ⇔ limn→∞ fn(ξ) = 0 for all ξ ∈ [0, 1].

Is the equivalence true if we do not assume that (fn) is uniformly bounded, explain?

Proof. This question is the same as 3 from August 2015.

⇒) C([0, 1])∗ = M[0, 1] for all ξ ∈ [0, 1], δξ ∈ M[0, 1]. So 0 = limn

∫
fndδξ = limn fn(ξ) so then

limn fn(ξ) = 0 (note that this does not require uniformly boundedness!)

⇐) Fix µ ∈ M[0, 1], we want to show that
∫
fndµ → 0. Since |fn(x)| ≤ M for all x and all n, then

by dominated convergence theorem,
∫
fndµ→ 0.

Finally, consider hn given by connecting (0, 0), (1/n, n), (2/n, 0) and (1, 0). So hn(ξ) → for all x ∈
[0, 1]. But by taking Lebesgue measure,

∫
hn(x)dµ(x) = 1 so fn ↛ 0 weakly.

Problem 10. Assume that f is measurable and non negative function on [0, 1]2 and that 1 ≤ r <

p <∞. Show that

(∫ 1

0

(∫ 1

0

fr(x, y)dy

)p/r

dx

)1/p

≤

(∫ 1

0

(∫ 1

0

fp(x, y)dx

)r/p

dy

)1/r

.

Hint: Let s = p/r, let 1 < s′ <∞ be the conjugate of s and let

F : [0, 1] → R+
0 , x 7→

∫ 1

0

fr(x, y)dy.

Then consider for an appropriate function h ∈ Ls′ [0, 1] the product hF .

Proof. Let F (x) :=
∫ 1

0
fr(x, y)dy. Let h ∈ Ls′ [0, 1] with ∥h∥s′ = 1 and h ≥ 0. Then by Tonelli (since

Fh ≥ 0), we have
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∫ 1

0

F (x)h(x)dx =

∫ 1

0

∫ 1

0

fr(x, y)h(x)dydx

=

∫ 1

0

∫ 1

0

fr(x, y)h(x)dxdy

≤
∫ 1

0

∥fr(·, y)∥p/r∥h∥s′dy

=

∫ 1

0

(∫ 1

0

fp(x, y)dx

)r/p

dy

So then
∫ 1

0
F (x)h(x)dx ≤

∫ 1

0

(∫ 1

0
fp(x, y)dx

)r/p
dy for all ∥h∥s′ = 1, h ≥ 0.

Notice that F ≥ 0 so when ∥h∥s′ = 1, we have

∥F∥s = sup
∥h∥s′=1

∫ 1

0

F (x)h(x)dx = sup
∥h∥s′=1,h≥0

∫ 1

0

F (x)h(x)dx

Therefore,

sup
∥h∥s′=1,h≥0

∫ 1

0

F (x)h(x)dx = ∥F∥s = ∥
∫ 1

0

fr(x, y) dy∥p/r =

(∫ 1

0

(∫ 1

0

fr(x, y)dy

)p/r
)r/p

≤
∫ 1

0

(∫ 1

0

fp(x, y)dx

)r/p

dy

So then,

(∫ 1

0

(∫ 1

0

fr(x, y)dy

)p/r

dx

)1/p

=

(∫ 1

0

(∫ 1

0

fp(x, y)dx

)r/p

dy

)1/r

.

22 August 2013

Problem 1. Let 1 ≤ p ≤ ∞ and let f ∈ Lp(R). For t ∈ R, let ft(x) = f(x − t) and consider

the mapping G : R → Lp(R) given by G(t) = ft. The space Lp(R) is equipped with the usual norm

topology.

(a) Show that G is continuous if 1 ≤ p <∞.

Proof. Since C∞
c (R) is dense in Lp(R) for 1 ≤ p < ∞, we can choose g ∈ C∞

c (R) such that
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∥g − f∥p < ϵ. Let tn → t ∈ R. Then ∀n,

∥ftn − ft∥p ≤ ∥ftn − gtn∥p + ∥gtn − gt∥p + ∥gt − ft∥p

It’s easy to see ∥ftn − gtn∥p and ∥gt − ft∥p are small since ∥g − f∥p < ϵ. For ∥gtn − gt∥p: let A
be a bounded and closed set in R such that

⋃
n supp gtn ∪ supp gt ⊂ A (since tn → t). Then by a

basic real analysis result, gtn → gt uniformly on A. So for sufficiently large n,

∥gtn − gt∥p =

(∫
R
|g(x− tn)− g(x− t)|pdx

)1/p

≤
(∫

A

ϵp0

)1/p

= ϵµ(A)1/p.

(b) Find an f for which the mapping G is not continuous when p = ∞ (and justify your answer).

Proof. We will take f = χ[0,1], so

∥χ[0,1](tn)− χ[0,1](t)∥∞ = ∥χ[tn,tn+1) − χ[t,t+1)∥∞ = 1 ∀n

although tn → t, we have ∥ · ∥∞ ↛ 0.

(c) Let 1 ≤ p, q ≤ ∞ be conjugate exponents (i.e. satisfying 1
p + 1

q = 1). Let f ∈ Lp(R) and
g ∈ Lq(R) and show that their convolution h = f ∗ g is continuous. Recall

h(t) =

∫ ∞

−∞
f(x)g(t− x)dx.

Proof. Define j(x) = g(−x) and note that g(t− x) = jt(x); then we have (by Hölder)

|h(t)− h(tn)| ≤
∫
R
|f(x)||g(t− x)− g(tn − x)|dx ≤ ∥f∥p∥gt − gtn∥q

This goes to zero when 1 < p ≤ ∞ (so that 1 ≤ q <∞) from part (a).

Also notice that

h(t) =

∫ ∞

−∞
f(x)g(t− x)dx =

∫ ∞

−∞
f(t− y)g(y)dy = g ∗ f.

So when p = 1, q = ∞ the same is true.

Problem 2. (a) For f ∈ CR([0, 1]), show that f ≥ 0 if and only if ∥λ − f∥u ≤ λ for all λ ≥ ∥f∥u,
where ∥ · ∥u denotes the uniform (supremum) norm.

Proof. ⇒) Note that λ1− f ≥ 0 whenever λ ≥ ∥f∥u. Hence ∥λ− f∥u = λ− ∥f∥u ≤ λ.

⇐) If there exists some x such that f(x) < 0, then if λ ≥ ∥f∥∞ so λ > 0. Then ∥λ − f∥∞ ≥
λ− f(x) > λ. Contradiction!
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(b) Suppose E ⊆ CR([0, 1]) is a closed subspace containing the constant function 1. For ϕ ∈ E∗,

we define ϕ ≥ 0 to mean ϕ(f) ≥ 0 whenever f ∈ E and f ≥ 0. Show ϕ ≥ 0 if and only if

∥ϕ∥ = ϕ(1).

Proof. ⇒) Note CR([0, 1]) is a real Banach space; that is, ϕ(f) ∈ R for all f ∈ E, ϕ ∈ E∗. We

have

∥ϕ∥ = sup
∥f∥u=1

|ϕ(f)| ≥ ϕ(1).

Also for ∥f∥u = 1, we have 1− f ≥ 0 so ϕ(1− f) ≥ 0 implies ϕ(1) ≥ ϕ(f). Moreover, ϕ(1 + f) =

ϕ(1) + ϕ(f) ≥ 0 and so ϕ(1) ≥ −ϕ(f) so then ϕ(1) ≥ |ϕ(f)|. Therefore, ϕ(1) = ∥ϕ∥

⇐) ϕ(1) = ∥ϕ∥ ≥ |ϕ(f)| for all ∥f∥u ≤ 1. Assume there exists some f ≥ 0 but ϕ(f) < 0.

By rescaling we can assume ∥f∥u < 1, so then

∥ϕ∥ ≥ ϕ

(
1− f

∥1− f∥

)
=

1

∥1− f∥
(ϕ(1)− ϕ(f)) ≥ ϕ(1)− ϕ(f) > ϕ(1) = ∥ϕ∥

which contradicts!

(c) If ϕ ∈ E∗ and ϕ ≥ 0, show that there is a bounded linear functional ψ on CR([0, 1]) so that

ψ ≥ 0 and the restriction of ψ to E is ϕ.

Proof. By Hahn-Banach, there exists some ψ which is an extension of ϕ such that ∥ψ∥ = ∥ϕ∥ =

ϕ(1) = ψ(1). So ψ ≥ 0 follows from (b). (Note we can choose ∥ψ∥ = ∥ϕ∥ since ∥ϕ∥∥x∥ is a

sublinear functional on CR([0, 1]).)

Problem 3. (a) Let µ and λ be mutually singular complex measures defined on the same measur-

able space (X,M) and let ν = µ+ λ. Show |ν| = |µ|+ |λ|.

Proof. Let E ⊔ F = X be a Jordan decomposition for µ, λ - say E is λ-null, F is µ-null. Note

ν ≪ |ν|; furthermore, if K is measurable such that |µ|(K) = |ν|(K ∩ E) + |ν|(K ∩ F ) = 0, then

0 = ν(K ∩ E) = µ(K ∩ E) = µ(K) (and similarly 0 = λ(K) as well). So µ, λ≪ |ν|.

Write dµ = f d|ν|, dλ = g d|ν|; then dν = dµ+ dλ = f + g d|ν| ⇒ d|ν| = |f + g| d|ν|. We also see

that, if L ⊂ E,

0 = λ(L) =

∫
1L dλ =

∫
L

f d|ν|,

so f |E ≡ 0 |ν|-a.e. (similarly g|F ≡ 0 |ν|-a.e.). Therefore |f + g| = |f | + |g| |ν|-a.e., which gives

the third equality in the equation

|ν|(K) =

∫
1K d|ν| =

∫
K

|f + g| d|ν| =
∫
K

|f |+ |g| d|ν| =
∫
K

d|µ|+
∫
K

d|λ| = |µ|(K) + |λ|(K).

(b) Construct a nonzero, atomless Borel measure on [0, 1] that is mutually singular with respect to

Lebesgue measure.
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Proof. Let f ∈ [0, 1][0,1] be the devil’s staircase. (I.e., for c ∈ C - the Cantor set - write c =∑∞
i=1 ai3

−i where ai ∈ {0, 2}. Define f : C → [0, 1] by

f(

∞∑
i=1

ai3
−i) =

∞∑
i=1

ai
2
2−i,

and extend f to [0, 1] by setting f(x) := f(max{c ∈ C : c ≤ x}).)

We can define a premeasure µf ((a, b]) = f(b) − f(a) and use Caratheodory’s theorem to get a

Lebesgue-Stieltjes measure on R (which is atomless since f is continuous). Then C,Cc are both

Lebesgue sets, m(C) = 0, and µf (C
c) = 0 (since f is constant on Cc). Since m,µf are positive

measures (f is increasing), m ⊥ µf .

Problem 4. Let (fn)
∞
n=1 be a sequence of continuous functions on [0, 1] and suppose that for all

x ∈ [0, 1], fn(x) is eventually nonnegative. Show that there is an open interval I ⊆ [0, 1] such that

for all n large enough, fn is nonnegative everywhere on I.

Proof. Let UN =
⋂∞

n=N f−1
n [0,∞) = {x | fn(x) ≥ 0 ∀n ≥ N}. This is closed. For every x ∈ [0, 1],

fn(x) is eventually non-negative so [0, 1] =
⋃

N UN .

By Baire-Category, there exists some N such that ∅ ≠ UN
◦
= U◦

N . So there exists some open I ⊆
U◦
N ⊆ [0, 1] and then for all n ≥ N , fn ≥ 0 on I.

Problem 5. Let µ be a nonatomic signed measure on a measure space (X,Ω), with µ(X) = 1.

Show that there is a measurable subset E ⊂ X with µ(E) = 1/2.

Proof. Note that µ+ < ∞ since µ(X) = 1. Hence WLOG we may show the result for finite posi-

tive measures; in general we can restrict our sets to living inside the set F which is µ−-null (Jordan

decomposition).

Also notice that for every ϵ > 0, there exists some E ⊆ X with 0 < µ(E) < ϵ. This is because we

can recursively divide our set into two non-trivial sets and choose the smaller one. That is, assume

there is some ε > 0 such that µ(E) > 0 implies µ(E) ≥ ε and consider the following process: set

E0 = X. At step i, find E′
i ⊂ Ei−1 such that µ(E′

i) > 0. So by assumption µ(E′
i) > ε. We have

min{µ(E′
i), µ(E

′c
i )} < µ(Ei−1)/2, which has positive measure. Set Ei to be whichever of E′

i or E
′c
i

attains this minimum. This process necessarily leads to a contradiction.

Therefore, for all n, we can find a set En such that 0 < µ(En) < 2−n. Let S = {E ⊆ X | µ(E) ≤ 1
2}

ordered by inclusion.

Zorn’s Lemma implies that there exists a maximal element E (spell this out!). If µ(E) < 1
2 then we

can find some F ⊆ Ec with 0 < µ(F ) < 1
2 − µ(E) but then µ(F ∪ E) ≤ µ(F ) + µ(E) ≤ 1

2 which

contradicts maximality.

Problem 6. Compute

lim
n→∞

∫ ∞

0

n sin(x/n)

x(1 + x2)
dx

and justify your computation.
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Proof. Let fn(x) = n sin(x/n)
x(1+x2) . Recall that limt→0

sin t
t = 1, so limn

n sin(x/n)
x(1+x2) = 1

1+x2 and since

| sin(x/n)| ≤ x/n for x, n positive,

∣∣∣∣n sin(x/n)x(1 + x2)

∣∣∣∣ ≤ ∣∣∣∣nx xn 1

1 + x2

∣∣∣∣ = 1

1 + x2
∈ L1[0,∞).

Then by DCT,

lim
n

∫ ∞

0

n sin(x/n)

x(1 + x2)
=

∫ ∞

0

lim
n

n sin(x/n)

x(1 + x2)
= arctan(x)|∞0 =

π

2
.

Problem 7. Prove or disprove: for every real-valued continuous function f on [0, 1] such that f(0) =

0 and every ϵ > 0, there is a real polynomial p having only odd powers of x, i.e. p is of the form

p(x) = a1x+ a3x
3 + a5x

5 + · · ·+ a2n+1x
2n+1,

such that supx∈[0,1] |f(x)− p(x)| < ϵ.

Proof. Let

A = { polynomial with even power}

so A is an algebra that separates points. Stone-Weierstrass implies that A is dense in C[0, 1]. Note

that the collection of polynomials given above can be written as xA := {xa : a ∈ A}; we may then

rephrase the problem statement as asking whether xA = {f ∈ C[0, 1] : f(0) = 0}.

The problem statement is then proven once we make the following claims:

First, if A ⊂ C[0, 1], xA ⊂ xA. Let xa ∈ xA be arbitrary and let ai → a uniformly for (ai) ⊂ A.

Then ∥xai − xa∥∞ ≤ ∥x∥∞∥ai − a∥∞ = ∥ai − a∥∞. So xai → xa and xa ∈ xA.

Next, we claim that xA = xC[0, 1] is dense in {f ∈ C[0, 1] : f(0) = 0}. We quickly see that xC[0, 1]

is an algebra (xf + xg = x(f + g), λxf = x(λf), and xfxg = x(xfg) where xfg ∈ C[0, 1]) that

separates points (consider x1) but which is non-unital (since 1
x /∈ C[0, 1]). Hence Stone-Weierstrass

completes the claim.

Since xA is a closed set containing xA, the problem statement follows.

Problem 8. Let f ∈ L1
loc(R).

(a) What (by definition) are the Hardy-Littlewood maximal function Hf and the Lebesgue set Lf of

f?
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Proof.

Hf(x) = sup
r>0

1

m(B(r, x))

∫
B(r,x)

|f(y)|dy︸ ︷︷ ︸
=:Arf(x)

.

Lf =

{
x | lim

r→0+

∫
B(r,x)

|f(y)− f(x)|dy
m(B(r, x))

= 0

}

(b) State the Hardy-Littlewood Maximal Theorem.

Proof. There exists a constant C > 0 such that for all f ∈ L1 and α > 0,

m({x : Hf(x) > α}) ≤ C

α

∫
|f(x)| dx.

(c) In each case, either construct concretely an example of f with the required property, or explain

why no such example exists (you may use theorems from Folland about the Lebesgue set, if you

state them).

(i) Lf = R

(ii) the complement of Lf is uncountable

(iii) Lf ⊆ (−∞, 0] ∪ [1,∞).

Proof. (i) It is easy to see f ≡ 0 satisfies the above property, as the integral in the numerator of

the conditions for Lf would be 0.

(ii) Consider 1C , where C is the Cantor set (on [0, 1]). Since m(C) = 0, for x ∈ C we have∫
B(r,x)

|f(y)− f(x)| dy =

∫
B(r,x)

|f(x)| dy = m(B(r, x)),

so

lim
r→0+

∫
B(r,x)

|f(y)− f(x)| dy
m(B(r, x))

= 1.

Hence Lc
f is an uncountable set.

(iii) By Theorem 3.20, if f ∈ L1
loc, then m((Lf )

c) = 0, so there is no f with this Lebesgue

set.

Problem 9. Let X be a separable Banach space, let {xn | n ≥ 1} be a countable, dense subset of the

unit ball of X and let B be the closed unit ball in the dual Banach space X∗ of X. For ϕ, ψ ∈ B, let

d(ϕ, ψ) =

∞∑
n=1

2−n|ϕ(xn)− ψ(xn)|.

Show that d is a metric on B whose topology agrees with the weak*-topology of X∗ restricted to B.
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Proof. We first check that d is a metric on B:

• d(ϕ, ψ) ≥ 0 clear

If d(ϕ, ψ) = 0 then ϕ = ψ on {xn} so ϕ = ψ by continuity / density

• triangle inequality follows as well

the weak*-topology is {z∗ ∈ X∗ | |(x∗ − z∗)(x)| < ϵ} for fixed x∗ ∈ X∗, x ∈ X, ϵ > 0.

For fixed x∗ ∈ X∗ consider the ϵ-ball in the metric d which is

{ψ ∈ X∗ | d(x∗, ψ) < ϵ} = {ψ ∈ X∗ |
∞∑

n=1

2−n|x∗(xn)− ψ(xn)| < ϵ}

We want to show that |(x∗ − ψ)(x)| < ϵ′ for any x ∈ BX and some ϵ′ > 0. Since xn is dense in BX

then there exists a xnk
→ x. Then

|(x∗ − ψ)(x)| ≤ |(x∗ − ψ)(x− xnk
)|+ |(x∗ − ψ)(xnk

)| < ϵ′

On the other hand, if ψ is in a weak* neighborhood of x∗, we want to show
∑∞

n=1 2
−n|x∗(xn) −

ψ(xn)| < ϵ. Let |(ψ − x∗)(xn)| < ϵ′ for all n, then

∞∑
n=1

2−n|x∗(xn)− ψ(xn)| <
∞∑

n=1

2−nϵ = ϵ.

Alternative Proof. We first check that d is a metric on B:

• d(ϕ, ψ) ≥ 0 clear

If d(ϕ, ψ) = 0 then ϕ = ψ on {xn} so ϕ = ψ by continuity / density

• triangle inequality follows as well

To see that the topologies agree:

Consider B(r, φ) under the metric. We need to show it contains an open U under the weak*-topology.

Say d(ϕk, ψ) → 0. Then
∑∞

n=1 2
−n|ϕk(xn) − ψ(xn)| → 0. So under the weak* topology, we need to

show for all x ∈ BX , |ϕk(x)− ψ(x)| → 0.

Indeed, this follows by density of {xn}. For large k, ∥ϕk∥ = supn |ϕk(xn)| ≤ M and |ϕk(xn)| ∼
|ψ(xn)|.

Then for every ϵ > 0, there exists some n such that ∥xn − x∥ < ϵ so

|ϕk(x)− ψ(x)| ≤ |ϕk(x)− ϕk(xn)|+ |ϕk(xn)− ψ(xn)|+ |ψ(xn)− ψ(x)|
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If |ϕk(x) − ψ(x)| → 0 for all x, then for all ϵ, choose N such that
∑∞

n=N 2−n < ϵ, so d(ϕk, ψ) =∑∞
n=1 2

−n|ϕk(xn)− ψ(xn)|.

Problem 10. Let T : X → Y be a linear map between Banach spaces that is surjective and satisfies

∥Tx∥ ≥ ϵ∥x∥ for some ϵ > 0 and all x ∈ X. Show that T is bounded.

Proof. Is Γ(T ) = {(x, Tx) | x ∈ X} closed in X × Y ?

If xn → x and Txn → y, we want to show y = Tx. T is surjective, so y = Tx0. Then for all ϵ̃ > 0,

there exists N such that for all n ≥ N ,

ϵ̃ > ∥Txn − Tx0∥ ≥ ϵ∥xn − x0∥.

So xn → x0, and Txn → Tx0.

The closed graph theorem implies T is bounded.

23 January 2013

Problem 1. Let f be a Lebesgue integrable, real-valued function on (0, 1) and for x ∈ (0, 1) define

g(x) =

∫ 1

x

t−1f(t)dt.

Show that g is Lebesgue integrable on (0, 1) and that
∫ 1

0
g(x)dx =

∫ 1

0
f(x)dx.

Proof. See January 2014, # 4.

Notice that

∫ 1

0

|g(x)| dx ≤
∫ 1

0

∫ 1

x

t−1|f(t)| dt dx Tonelli
=

∫ 1

0

∫ t

0

t−1|f(t)| dx dt =
∫ 1

0

|f(t)| dt <∞

since f ∈ L1(0, 1). Note that we have also shown t−1f(t) ∈ L1(m×m) as well. So then by Fubini,

∫ 1

0

g(x)dx =

∫ 1

0

∫ 1

x

t−1f(t) dt dx =

∫ 1

0

∫ t

0

t−1f(t) dx dt =

∫ 1

0

f(t) dt.

Problem 2. Let fn ∈ C[0, 1]. Show that fn → 0 weakly if and only if the sequence (∥fn∥)∞n=1 is

bounded and fn converges pointwise to 0.

Proof. See August 2015, # 3.
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⇒) We know C[0, 1]∗ = M[0, 1]. Then fn → 0 weakly implies
∫
fndµ → 0 for all µ ∈ M[0, 1].

Choose µ = δt so

∫
fn dδt = fn(t) → 0 ∀t ∈ [0, 1]

(this follows from the fact that weak convergence implies uniformly bounded). Consider

χ : C[0, 1] → C[0, 1]∗∗ = M[0, 1]∗

χ(fn)(µ) = µ(fn)

Since µ(fn) → 0 then χ(fn)(µ) → 0 for all µ ∈ M[0, 1]. Since convergent sequences are bounded,

then supn |χ(fn)(µ)| ≤ M . By the uniform boundedness theorem, supn ∥χ(fn)∥ < ∞. By isometry,

∥fn∥ = ∥χ(fn)∥ so supn ∥fn∥ <∞.

⇐) By Dominated Convergence Theorem, fn → 0 in L1(µ) (note that M1[0,1] is a dominating func-

tion for all fn by assumption). So therefore, |
∫
fndµ| ≤

∫
|fn|d|µ| → 0. So fn → 0 weakly (since µ

was arbitrary).

Problem 3. Let (X,µ) be a measure space with 0 < µ(X) ≤ 1 and let f : X → R be measurable.

State the definition of ∥f∥p for p ∈ [1,∞]. Show that ∥f∥p is a monotone increasing function of

p ∈ [1,∞) and that limp→∞ ∥f∥p = ∥f∥∞.

Proof. See January 2016, # 8.

By Hölder, we know that ∥f∥p ≤ ∥f∥q when p ≤ q. (It may be worth going through part of the

proof given in Proposition 6.12 for full credit on an exam.) Also, ∥f∥p ≤ ∥f∥∞ for all p. Therefore,

∥f∥p ↗ ∥f∥∞ and so limp ∥f∥p ≤ ∥f∥∞.

On the other hand, for every ϵ > 0, let E = {x | |f(x)| > ∥f∥∞ − ϵ} and 0 < µ(E) ≤ 1 since

∥f∥∞ = esssup |f(x)|. Then ∥f∥pp ≥
∫
E
|f |p >

(
∥f∥∞ − ϵ

)p
µ(E) ⇒ ∥f∥p > (∥f∥∞ − ε)µ(E)1/p. Take

p→ ∞ so limp ∥f∥p ≥ ∥f∥∞ − ϵ, implying limp ∥f∥p ≥ ∥f∥∞.

Problem 4. (a) Is there a signed Borel measure µ on [0, 1] such that

p′(0) =

∫ 1

0

p(x)dµ(x)

for all real polynomials p of degree at most 19?

Proof. We first define the linear functional I(p) = p′(0).

Write P = span{1, x, x2, . . . , x19}, which is a finite dimensional space. Thus, all norms are

equivalent. We take, in particular, the norms ∥ · ∥m = maxi=1,...,19 |ai| and ∥ · ∥∞. Then there

must exist some C such that if ∥p∥∞ = 1 then ∥p∥m ≤ C so |a1| ≤ C which implies that I is

bounded.

By Hahn-Banach, there exists some Ĩ ∈ C[0, 1]∗ such that Ĩ(p) = I(p) for all p ∈ P. By Riesz,

there exists some µ such that Ẽ(p) = p′(0) =
∫ 1

0
p(x)dµ.
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(b) Is there a signed Borel measure µ on [0, 1] such that

p′(0) =

∫ 1

0

p(x)dµ(x)

for all real polynomials p?

Proof. Suppose there did exist such a measure µ on [0, 1]. Then since µ([0, 1]) =
∫ 1

0
1dµ = 0,

we have that |µ|([0, 1]) < ∞. In particular, µ+ and µ− are both finite measures, so there is a

corresponding bounded linear functional I ∈ C[0, 1]∗ such that I(p) = p′(0) for all polynomials

p.

But this raises an issue: take the polynomials pn := (1 − x)n. Note ∥pn∥∞ = 1 for all n, but

|p′n(0)| = n. So I is unbounded - contradiction. Thanks Inyoung Ryu for the easy example.

Problem 5. Let F be the set of all real-valued functions on [0, 1] of the form

f(t) =
1

Πn
j=1(t− cj)

for natural numbers n and for real numbers cj /∈ [0, 1]. Prove or disprove: for all continuous, real-

valued functions g and h on [0, 1] such that g(t) < h(t) for all t ∈ [0, 1], there is a function a ∈
spanF such that g(t) < a(t) < h(t) for all t ∈ [0, 1].

Proof. Let A = spanF . It’s easy to see this is an algebra since cj /∈ [0, 1]. Also 1
t+1 separates

points, so Stone-Weierstrass theorem implies A = C[0, 1].

Let M = mint∈[0,1] |h(t) − g(t)|, so we can choose some a ∈ A such that
∥∥∥a− h+g

2

∥∥∥
∞
< M

6 . Then

−M
6 < a− h+g

2 < M
6 and since h− g ≥M , then

h− a =
h

2
− a+

h

2
≥ h

2
− a+

g

2
+
M

2
=
h+ g

2
− a+

M

2
>
M

2
− M

6
=
M

3
> 0

a− g = a− g + g

2
≥ a− g + h

2
+
M

2
>

−M
6

+
M

2
=
M

3
> 0

So then g < a < h.

Problem 6. Let k : [0, 1] × [0, 1] → R be continuous and let 1 < p < ∞. For f ∈ Lp[0, 1], let Tf be

the function on [0, 1] defined by

(Tf)(x) =

∫ 1

0

k(x, y)f(y)dy.

Show that Tf is a continuous function on [0, 1] and that the image under T of the unit ball in Lp[0, 1]

has compact closure in C[0, 1].
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Proof. Note that

|Tf(x)− Tf(y)| ≤
∫ 1

0

|k(x, z)− k(y, z)||f(z)|dz ≤ ∥k(x, ·)− k(y, ·)∥q∥f∥p for q =
p

p− 1

Since k is continuous on [0, 1]2, then for every ϵ > 0 there exists some δ > 0 such that if |x− y| < δ,

then

∥k(x, ·)− k(y, ·)∥qq =

∫ 1

0

|k(x, z)− k(y, z)|qdz <
∫ 1

0

ϵpdz = ϵp.

Therefore, Tf is continuous.

Now consider F = {Tf | ∥f∥p ≤ 1} ⊆ C[0, 1]. We’ll use Arzela-Ascoli:

• equicontinuous

follows from above

• pointwise bounded

|Tf(x)| ≤ ∥K(x, ·)∥q∥f∥p ≤ ∥K(x, ·)∥q ≤
(∫ 1

0

Mqdz

)1/q

=M

so it’s actually uniformly bounded

Therefore, by Arzela-Ascoli, F is compact in C[0, 1].

Problem 7. (a) Define the total variation of a function f : [0, 1] → R and absolute continuity of f .

Proof. These definitions can be found at (3.24) and (3.31) of Folland.

(b) Suppose f : [0, 1] → R is absolutely continuous and defines g ∈ C[0, 1] by

g(x) =

∫ 1

0

f(xy)dy.

Show that g is absolutely continuous.

Proof. Since f is absolutely continuous, there exists some δ > 0 such that
∑n

i=1 |bi − ai| < δ

implies
∑n

i=1 |f(bi)− f(ai)| < ϵ. Fix some y ∈ [0, 1] so that

n∑
i=1

|biy − aiy| ≤
n∑

i=1

|bi − ai| < δ′

This implies then that
∑n

i=1 |f(biy)− f(aiy)| < ϵ. We also note that absolute continuity implies

uniform continuity; in particular, f is bounded on [0, 1] and is hence in L1. Therefore,
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n∑
i=1

|g(bi)− g(ai)| =
n∑

i=1

∣∣∣∣∫ 1

0

f(biy)− f(aiy) dy

∣∣∣∣ 2.25≤ ∫ 1

0

n∑
i=1

|f(biy)− f(aiy)| ≤
∫ 1

0

ϵdx = ϵ.

So g is absolutely continuous.

Problem 8. (a) State the definition of absolute continuity, v ≪ µ, for positive measures µ and

ν, and state the Radon-Nikodym Theorem, (or the Lebesgue-Radon-NIkodym Theorem, if you

prefer.)

Proof. See Theorem 3.8 of Folland.

(b) Suppose that we have ν1 ≪ µ1 and ν2 ≪ µ2 for positive measures νi and µi on measurable

spaces (Xi,Mi) for i = 1, 2. Show that we have ν1 × ν2 ≪ µ1 × µ2, and

d(ν1 × ν2)

d(µ1 × µ2)
(x, y) =

dν1
dµ1

(x)
dν2
dµ2

(y).

Proof. Assume E ∈ M1 ⊗M2 and µ1 × µ2(E) = 0. Define

Ex = {y ∈ X2 | (x, y) ∈ E} Ey = {x ∈ X | (x, y) ∈ E}

Then Ex ∈ M1 and Ey ∈ M2 for all x ∈ X1, y ∈ X2. Since µ1 and µ2 are positive, then

0 = (µ1 × µ2)(E) =
∫
µ1(E

y)dµ2(y) then µ1(E
y) = 0 µ2-almsot everywhere and so then

ν1(E
y) = 0 µ2-almost everywhere.

Thus, µ2({y ∈ X2 | ν1(Ey) > 0}) = 0 so then ν2({y ∈ X2 | ν1(Ey) > 0}) = 0. Thus, ν1(E
y) = 0

for ν2-almost everywhere and therefore, (ν1 × ν2)(E) =
∫
ν1(E

y)dν2(y) = 0.

Thus, ν1 × ν2 ≪ µ1 × µ2. By Radon-Nikodym theorem,

ν1 × ν2(E) =

∫
E

d(ν1 × ν2)

d(µ1 × µ2)
(x, y)d(µ1 × µ2) for E ∈ M1 ⊗M2

Since ν1 ≪ µ1, by Proposition 3.9(a) in Folland,

(ν1 × ν2)(E) =

∫
ν2(Ex)dν1(x)

=

∫
ν2(Ex)

dν1
dµ1

(x)dµ1(x)

=

∫ (∫
Ex

dν2
dµ2

(y)dµ2(y)

)
dν1
dµ1

(x)dµ1(x)

=

∫
E

dν2
dµ2

(y)
dν1
dµ1

(x)d(µ1 × µ2)(x, y)

By the uniqueness of Radon-Nikodym derivative, we have

d(ν1 × ν2)

d(µ1 × µ2)
(x, y) =

dν1
dµ1

(x)
dν2
dµ2

(y).
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Problem 9. (a) Let E be a nonzero Banach space and show that for every x ∈ E, there is ϕ ∈ E∗

such that ∥ϕ∥ = 1 and |ϕ(x)| = ∥x∥.

Proof. See Theorem 5.8(a) in Folland.

(b) Let E and F be Banach spaces, let π : E → F be a bounded linear map and let π∗ : F ∗ → E∗ be

the induced map on dual spaces. Show that ∥π∗∥ = ∥π∥.

Proof. We have π∗(y∗)(x) = y∗(π(x)) for all y∗ ∈ F ∗ and x ∈ E. Then ∥π∗(y∗)(x)∥ ≤
∥y∗∥∥π∥∥x∥ so then ∥π∗∥ ≤ ∥π∥.

On the other hand, by part (a), for each x ∈ E such that ∥x∥ ≤ 1, π(x) ∈ F , we can find

y∗ ∈ F ∗ such that |y∗(π(x))| = ∥π(x)∥ and ∥y∗∥ = 1. Then

∥π∗∥ ≥ ∥π∗(y∗)∥ ≥ |π∗(y)(x)| = |y∗(π(x))| = ∥π(x)∥ ∀∥x∥ ≤ 1

So ∥π∗∥ ≥ ∥π∥. Thus, ∥π∥ = ∥π∗∥.

Problem 10. Let X be a real Banach space and suppose C is a closed subset of X such that

(i) x1 + x2 ∈ C for all x1, x2 ∈ C,

(ii) λx ∈ C for all x ∈ C and λ > 0,

(iii) for all x ∈ X there exists x1, x2 ∈ C such that x = x1 − x2.

Prove that, for some M > 0, the unit ball of X is contained in the closure of

{x1 − x2 | xi ∈ C, ∥xi∥ ≤M}.

Deduce that every x ∈ X can be written x = x1 − x2, with xi ∈ C and ∥xi∥ ≤ 2M∥x∥.

Proof. Define

Cn = {x1 − x2 | xi ∈ C, ∥xi∥ ≤ n}

By (iii), we know that X =
⋃
Cn. By Baire Category, there exists some M such that ∅ ̸= CM

◦
=

C◦
M . Thus, there exists an open ball B ⊆ CM , B = B(x0, 2r).

For any x ∈ BX , x0 + rx ∈ B ⊆ CM . From (i), we know that CM − CM ⊆ C2M so then rx =

(x0 + rx)− x0 ∈ CM − CM ⊆ C2M . From (ii), we know x ∈ C2M/r, so BX ⊆ C2M/r. Let M
′ = 2M

r .

For any x ∈ X, x ∈ CM ′∥x∥. So we can find z1, y1 ∈ C such that ∥z1∥, ∥y1∥ ≤ M∥x∥ and ∥x − (z1 −
y1)∥ < 1

2∥x∥. Therefore,
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2(x− (z1 − y1))

∥x∥
∈ CM ⇒ x− (z1 − y1) ∈ CM∥x∥/2

So we can find z2, y2 ∈ C such that ∥z2∥, ∥y2∥ ≤ M
2 ∥x∥ and

∥∥∥∥∥x−
2∑

i=1

(zi − yi)

∥∥∥∥∥ < 1

22
∥x∥.

Inductively, we can find {zn}, {yn} ⊆ C such that ∥zk∥, ∥yk∥ ≤ M
2k−1 ∥x∥ and

∥∥∥∥∥x−
k∑

i=1

(zi − yi)

∥∥∥∥∥ < 1

2k
∥x∥.

Then,

∞∑
k=1

∥zk∥ ≤
∞∑
k=1

M∥x∥ 1

2k
< 2M∥x∥ <∞

so
∑∞

k=1 zk converges to some x1 in C and similarly
∑∞

k=1 yk converges to some x2 in C (since C is

closed). Moreover,

lim
n

∥∥∥∥∥x−
n∑

i=1

(zi − yi)

∥∥∥∥∥ = lim
n

∥∥∥∥∥x−

(
n∑

i=1

zi −
n∑

i=1

yi

)∥∥∥∥∥ = 0.

So then x =
∑∞

i=1(zi − yi) = x1 − x2.

24 August 2012

Problem 1. Let (X,M, µ) be a measure space. Prove that the normed vector space L1(X,µ) is

complete. You may use any results except the convergence of function series.

Proof. See class notes. Fill this in!

Problem 2. Fix two measure spaces (X,M, µ) and (Y,N , ν) with µ(X), ν(Y ) > 0. Let f : X → C,
g : Y → C be measurable. Suppose f(x) = g(y), (µ × ν)-a.e. Show that there is a constant a ∈ C
such that f(x) = a µ-a.e. and g(y) = a ν-a.e.

Proof. Let E := {(x, y) ∈ X × Y | f(x) = g(y)}, so (µ ⊗ ν)(Ec) = 0. Then for every a ∈ C, by
Fubini-Tonelli,
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0 = (µ⊗ ν) ({(x, y) ∈ X × Y | f(x) = a, g(y) ̸= a}) = µ ({x ∈ X | f(x) = a}) ν ({y ∈ Y | g(y) ̸= a}) .

Assume µ({x ∈ X | f(x) = a}) = 0 for all a ∈ C. Then

0 < (µ⊗ ν)(X × Y )

= (µ⊗ ν)(E) =

∫
X×Y

χ{(x,y)|f(x)=g(y)}dµ(x)dν(y)

=

∫
Y

(∫
X

χ{x|f(x)=g(y)}dµ(x)

)
dν(y)

=

∫
Y

0dν(y) = 0.

This is a contradiction so there must exist some a ∈ C with µ({x ∈ X | f(x) = a}) > 0. Then

ν({y ∈ Y | g(y) ̸= 0}) = 0 so g(y) = a ν-a.e.

Similarly, we have (µ⊗ν)({(x, y) | f(x) ̸= a, g(y) = a}) = 0. Since ν({y ∈ Y | g(y) = a}) = ν(Y ) ̸= 0,

then µ({x | f(x) ̸= a}) = 0 so f(x) = a µ-a.e.

Problem 3. Let f : R3 → R be a Borel measurable function. Suppose for every ball B, f is

Lebesgue integrable on B and
∫
B
f(x)dx = 0. What can you deduce about f? Justify your answer

carefully.

Proof. Since f ∈ L1
loc(R2), by Lebesgue Differentiation Theorem, for a.e. x0 ∈ R2,

lim
r→0

1

|B(r, x0)|

∫
B(r,x0)

f(x)dx = f(x0)

This implies f(x0) = 0 so f = 0 almost everywhere.

Problem 4. Let X be a locally compact Hausdorff space. Denote by C0(X) the space of complex-

valued continuous functions on X which vanish at infinity, and by Cc(X) the subset of compactly

supported functions. Use an approximate version of the Stone-Weierstrass theorem to prove that

Cc(X) is dense in C0(X).

Proof. For any f, g ∈ Cc(X), the complex conjugation of f is also in Cc(X).

By complex-LCH-Stone-Weierstrass, we only need to show that Cc(X) separates points.

For every x ̸= y, we can find open U, V with x ∈ U, y ∈ V with U ∩ V = ∅. Since X is LCH, we can

require U to be compact.

Now {x} ⊆ U ⊆ U ⊆ X\V ⊆ X\{y}. Then by Urysohn’s Lemma for LCH, we can find a continuous

function f : X → [0, 1] such that f |U = 1 and f(x) = 0 outside a compact subset of X\{y}. So
f(x) = 1, f(y) = 0, and f ∈ Cc(X).
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So Cc(X) separates points. Also, there does not exist any x0 ∈ X such that f(x0) = 0 for all f ∈
Cc(X).

Therefore, by Stone-Weierstrass, Cc(X) = C0(X).

Problem 5. Give an example of each of the following. Justify your answers

(a) A nowhere dense subset of R of positive Lebesgue measure

Proof. Take a fat Cantor set.

(b) A closed, convex subset of a Banach space with multiple points of minimal norm.

Proof. Let X = L1[0, 1], C = {f ∈ X |
∫ 1

0
f(t)dt = 0}. It’s easy to see that C is closed and

convex. The minimum norm of elements in C is 1 because

∥f∥1 =

∫ 1

0

|f(t)|dt ≥
∣∣∣∣∫ 1

0

f(t)dt

∣∣∣∣ = 1.

But every element of {aχ[0,1/2] + (2− a)χ[1/2,1]}0≤a≤2 in C has norm 1.

Problem 6. Let

S =

{
f ∈ L∞(R) | |f(x)| ≤ 1

1 + x2
a.e.

}
.

Which of the following statements are true? Prove your answers.

(a) The closure of S is compact in the norm topology

Proof. NO. Let

fn(x) :=
1

x2 + 1
χ
[ 1
n+1 ,

1
n ](x)

in S. So there are no subsequences of (fn) which are Cauchy in L∞ since ∥fn − fm∥∞ ≥ 1 for

n ̸= m.

(b) S is closed in the norm topology.

Proof. YES. Suppose (fn) ⊆ S, fn → f in L∞. Then

|f(x)| ≤ |fn(x)|+ |fn(x)− f(x)| < 1

1 + x2
+ ∥fn − f∥∞ <

1

1 + x2
+ ϵ a.e.

Letting ϵ→ 0, we have |f(x)| ≤ 1
1+x2 a.e. and f ∈ L∞ so f ∈ S.

(c) The closure of S is compact in the weak* topology
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Proof. YES. The unit ball in L∞(R) is weak*-compact by Alaoglu. Since 1
1+x2 ≤ 1 for all x ∈

R, then S is a subset of the unit ball in L∞. Therefore, S
w∗

is weak* compact.

Problem 7. Let T be a bounded operator on a Hilbert space H. Prove that ∥T ∗T∥ = ∥T∥2. State

the results you are using.

Proof. Clearly, ∥T ∗T∥ ≤ ∥T ∗∥∥T∥ = ∥T∥2. On the other hand,

∥T∥2 = sup
∥x∥=1

|⟨Tx, Tx⟩| = sup
∥x∥=1

|⟨T ∗Tx, x⟩|.

Since for ∥x∥ = 1,

|⟨T ∗Tx, x⟩| ≤ ∥T ∗Tx∥∥x∥ ≤ ∥T ∗T∥∥x∥2 ≤ ∥T ∗T∥

then ∥T∥2 ≤ ∥T ∗T∥.

Problem 8. (a) Let g be an integrable function on [0, 1]. Does there exist a bounded measurable

function f such that ∥f∥∞ ̸= 0 and
∫ 1

0
fgdx = ∥g∥1∥f∥∞? Give a construction or a counterex-

ample.

Proof. YES. For any g ∈ L1, let f = sgn(g) where g(x) ̸= 0, and 1 where g(x) = 0. Then

∥f∥∞ = 1 and

∫ 1

0

fg =

∫ 1

0

|g(x)|dx = ∥g∥1 = ∥g∥1∥f∥∞.

(b) Let g be a bounded measurable function on [0, 1]. Does there exist an integrable function f such

that ∥f∥1 ̸= 0 and
∫ 1

0
fgdx = ∥g∥∞∥f∥1? Give a construction or a counterexample.

Proof. NO. Let g(x) = x on [0, 1] so ∥g∥∞ = 1, implying g ∈ L∞[0, 1]. Assume such an f ∈ L1

exists, so

∥f∥1 = ∥f∥1∥g∥∞ =

∫ 1

0

fgdx =

∫ 1

0

xf(x)dx

and also ∥f∥1 =
∫ 1

0
|f |dx so then

∫ 1

0
f(x)xdx =

∫ 1

0
|f |dx. Therefore,

∫ 1

0

|f(x)|dx =

∫ 1

0

xf(x)dx ≤
∫ 1

0

x|f(x)|dx ≤
(
1− 1

n

)∫ 1−1/n

0

|f(x)|dx+

∫ 1

1−1/n

|f(x)|dx

So then

∫ 1−1/n

0

|f(x)|dx+

∫ 1

1−1/n

|f(x)|dx ≤
(
1− 1

n

)∫ 1−1/n

0

|f(x)|dx+

∫ 1

1−1/n

|f(x)|dx
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Thus,
∫ 1−1/n

0
|f(x)|dx = 0 for all n ∈ N. Letting fn(x) = χ[0,1−1/n]|f(x)| ↗ |f(x)| then by

monotone convergence theorem,
∫
|f(x)dx = limn

∫
fn(x) = 0 so ∥f∥1 = 0.

Problem 9. Let F : R → C be a bounded continuous function, µ the Lebesgue measure, and f, g ∈
L1(µ). Let

f̃(x) =

∫
F (xy)f(y)dµ(y), g̃(x) =

∫
F (xy)g(y)dµ(y).

Show that f̃ and g̃ are bounded continuous functions which satisfy

∫
fg̃dµ =

∫
f̃gdµ.

Proof. We have ∥f̃∥∞ ≤ ∥F∥∞∥f∥1 < ∞ and ∥g̃∥ ≤ ∥F∥∞∥g∥1 < ∞ so f̃ , g̃ ∈ L∞. By dominated

convergence theorem, we know that limn

∫
[−n,n]

|f(x)dµ = ∥f∥1. So then for every ϵ > 0, there

exists some N such that
∫
R\[−n,n]

|f(x)|dµ < ϵ. Then

|f̃(x1)− f̃(x2)| ≤
∫

|F (x1y)− F (x2y)||f(y)|dµ(y)

=

∫
[−n,n]

|F (x1y)− F (x2y)||f(y)|dµ(y) +
∫
R\[−n,n]

|F (x1y)− F (x2y)||f(y)|dµ(y)

≤ sup
y∈[−n,n]

|F (x1y)− F (x2y)|∥f∥1 + 2∥F∥∞ϵ

Since F is continuous, let |x1 − x2| < δ
n such that |x1y − x2y| < δ imples |F (x1y)− F (x2y)| < ϵ. So

|f̃(x1)− f̃(x2)| → 0 as |x1 − x2| → 0.

A similar argument will show that g̃ is continuous. Since fg̃ ∈ L1, by Fubini,

∫
fg̃dµ =

∫ ∫
f(x)F (xy)g(y)dµ(y)dµ(x)

=

∫
g(y)

(∫
f(x)F (xy)dµ(x)

)
dµ(y)

=

∫
g(y)f̃(y)dµ(y)

=

∫
f̃gdµ.

Problem 10. Let µ, {µn | n ∈ N} be finite Borel measures on [0, 1]. µn → µ vaguely if it converges

in the weak* topology on M [0, 1] = (C[0, 1])∗. µn → µ in moments if for each k ∈ {0} ∪ N,
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∫
[0,1]

xkdµn(x) →
∫
[0,1]

xkdµ(x).

Show that µn → µ vaguely if and only if µn → µ in moments.

Proof. ⇒) trivial by the definitions

⇐) We want to show that for all f ∈ C[0, 1],
∫
fdµn →

∫
fdµ. By Stone-Weierstrass, we can find

pn to be a sequence of polynomials which converge uniformly to f on [0, 1]

∣∣∣∣∫ f(x)dµ−
∫
f(x)dµn

∣∣∣∣ ≤ ∣∣∣∣∫ fdµ−
∫
pmdµ

∣∣∣∣+ ∣∣∣∣∫ pmdµ−
∫
pmdµn

∣∣∣∣+ ∣∣∣∣∫ pmdµn −
∫
fdµn

∣∣∣∣
For the first part, |

∫
fdµ−

∫
pmdµ| ≤ ∥f−pm∥∞µ(X) → 0 as m→ ∞. Similarly,

∣∣∫ pmdµn −
∫
fdµn

∣∣ ≤
∥f − pm∥∞µn(X) → 0 for all n.

Next, find a polynomial qmj with degree at most j such that ∥qmj − pm∥∞ → 0 as j → ∞. Then

since µn → µ in moments, then
∣∣∫ qmj

dµ−
∫
qmj

dµn

∣∣→ 0 for all j. Thus,

∣∣∣∣∫ pmdµ−
∫
pmdµn

∣∣∣∣ ≤ ∣∣∣∣∫ pndµ−
∫
qmj

dµ

∣∣∣∣+ ∣∣∣∣∫ qmj
dµ−

∫
qmj

dµn

∣∣∣∣+ ∣∣∣∣∫ qmj
dµn −

∫
pmdµn

∣∣∣∣
≤ ∥pm − qmj

∥∞ (µ(X) + µn(X)) +

∣∣∣∣∫ qmj
dµ−

∫
qmj

dµn

∣∣∣∣→ 0.

25 January 2012

Problem 1. Let A be the subset of [0, 1] consisting of numbers whose decimal expansions contain

no sevens. Show that A is Lebesgue measurable, and find its measure. Why does non-uniqueness of

decimal expansions not cause any problems?

Proof. Let Ai be the subset of [0, 1] consisting of numbers whose first i digits are not 7. Then An+1 ⊆
An and A =

⋂
nAn,

A1 = [0, 0.7] ∪ [0.8, 1]

A2 = [0, 0.07] ∪ [0.08, 0.17] ∪ . . . ∪ [0.98, 1]

So An is the union of some Borel intervals in [0, 1], so An is Lebesgue measurable. Therefore, A is

Lebesgue measurable.
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Now for 0 ≤ i ≤ 9, let Ai
n be the subset of An such that the (n + 1)th digit is i. Then we can write

An = ⊔9
i=0A

i
n.

Also, m(Ai
n) = m(Aj

n), so m(An) = 10m(Ai
n) and An+1 = ⊔i ̸=7A

i
n so m(An+1) = 9m(Ai

n). There-

fore, m(An+1) =
9
10m(An). Then

m(A) = m

( ∞⋂
n=1

An

)
= lim

n
m(An) = lim

n

(
9

10

)n−1

m(A1) = 0

The only numbers with non-unique decimal representation are 0.a1a2 . . . an = 0.a1a2 . . . an−1999 . . ..

However ∀n there are only finitely many, so non-unique =
⋃

n{0.a1 . . . an} which is countable, hence

null, hence Lebesgue.

Problem 2. Let the functions fα be defined by

fα(x) =

{
xα cos(1/x) x > 0

0 x = 0

Find all values of α ≥ 0 such that

(a) fα is continuous

Proof. When a > 0, xa cos(1/x) ≤ xa → 0 as x → 0 so fa is continuous. If a = 0, we know

cos(1/x) isn’t continuous at 0.

(b) fα is of bounded variation on [0, 1]

Proof. First, 0 < a ≤ 1, put partitions

Pm =

{
0,

1

2πm
,

1

π(2m− 1)
, . . . ,

1

π
, 1

}
Then

fa(Pm) =

{
0,

1

(π2m)a
,

−1

(π(2n− 1))a
, . . . ,

−1

πa
, cos(1)

}
So

Tfα(Pm) =

∣∣∣∣ 1

(π(2m))a
− 0

∣∣∣∣+ ∣∣∣∣ −1

(π(2m− 1))a
− 1

(π2m)a

∣∣∣∣+ . . .+

∣∣∣∣cos(1)− −1

πa

∣∣∣∣ ≈ 2m∑
i=1

c

(πi)a
→ ∞

when 0 < a ≤ 1 as m→ ∞.

So when 0 < a ≤ 1, fa is not of bounded variation when 0 < a ≤ 1. For a > 1, let’s look at

(c).
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(c) fα is absolutely continuous on [0, 1]

Proof. When a > 1, we see f ′a(0) = 0 and f ′a is integrable because f ′a(x) = axa−1 cos(1/x) +

xa−2 sin(1/x) so then fa(x) =
∫ x

0
f ′a(t)dt. Thus, f is absolutely continuous.

So in (b) we have fa is of bounded variation for a > 1. Since fa isn’t bounded variation when

0 < a ≤ 1, so fa isn’t absolutely continuous either when 0 < a ≤ 1.

Problem 3. Let F denote the family of functions on [0, 1] of the form

f(x) =

∞∑
n=1

an sin(nx)

where an are real and |an| ≤ 1/n3. State a general theorem and use that theorem to prove that any

sequences in F has a subsequence that converges uniformly on [0, 1].

Proof. We’ll use Arzela-Ascoli II.

For all f ∈ F ,

|f(x)| =

∣∣∣∣∣
∞∑

n=1

an sin(nx)

∣∣∣∣∣ ≤
∞∑

n=1

|an| ≤
∞∑

n=1

n−3 <∞

so uniformly bounded. Also, for all f ∈ F ,

|f(x)−f(y)| ≤
∞∑

n=1

|an|| sin(nx)−sin(ny)| ≤
∞∑

n=1

2n−3

∣∣∣∣cos nx+ ny

2

∣∣∣∣ ∣∣∣∣sin nx+ ny

2

∣∣∣∣ ≤ ∞∑
n=1

n−2|x−y| = π2

6
|x−y|

So F is equicontinuous.

Then the result follows by A-A II. (A-A I is sufficient since C[0, 1] is a metric space.)

Problem 4. Let H be a Hilbert space and W ⊂ H a subspace. Show that H =W ⊕W⊥ where W is

the closure of W .

Note: Do not just state this as a consequence of a standard result, prove the result.

Proof. The “standard result” being referred to here is Theorem 5.24 in Folland. You may need to

show that W⊥ =W
⊥
. Happy reading :)

Problem 5. Suppose A is a bounded linear operator on a Hilbert space H with the property that

∥p(A)∥ ≤ C sup{|p(z)| | z ∈ C, |z| = 1}

for all polynomials p with complex coefficients, and a fixed constant C. Show that to each pair x, y ∈
H there corresponds a complex Borel measure µ on the circle S1 = {z ∈ C | |z| = 1} such that
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⟨Anx, y⟩ =
∫
zndµ(z) n = 0, 1, 2, . . .

Proof. Consider

Tx,y : P (S1) → C
p 7→ ⟨P (A)x, y⟩

Then

|⟨P (A)x, y⟩| ≤ ∥P (A)∥∥x∥∥y∥ ≤ C∥P∥∞∥x∥∥y∥

Thus, |Tx,y(P )| ≤ C∥x∥∥y∥∥P∥∞ = f(P ) which is obviously a seminorm. By Hahn-Banach, Tx,y
can be extended to C(S1).

Then apply Riesz-Representation Theorem, there exists a complex Borel measure µ on S1 such that

Tx,y(P ) = ⟨P (A)x, y⟩ =
∫
S1

P (z)dµ(z)

Take P (z) = zn so ⟨Anx, y⟩ =
∫
S1 z

ndµ(z).

Problem 6. Let ϕ be the linear functional

ϕ(f) = f(0)−
∫ 1

−1

f(t)dt

(a) Compute the norm of ϕ as a functional on the Banach space C[−1, 1] with uniform norm

Proof.

|ϕ(f)| ≤ |f(0)|+
∫ 1

−1

|f(t)|dt ≤ ∥f∥∞ + ∥f∥∞
∫ 1

−1

dt = 3∥f∥∞

So ∥ϕ∥ ≤ 3. On the other hand, let fn be piecewise linear functional such that fn = −1 on

[−1,−1/n] and [1/n, 1] and fn(0) = 1. Then

∫ 1

−1

fn(t)dt = −2(1− 1/n) +
2

n
= −2 +

4

n
→ −2

So sup |ϕ(fn)| ≥ 3 so ∥ϕ∥ = 3.

(b) Compute the norm of ϕ as a functional on the normed vector space LC[−1, 1] which is C[−1, 1]

with the L1 norm.

Proof.

∥ϕ∥ = sup
f∈LC[−1,1]

|f(0)−
∫ 1

−1
f(t)dt|

∥f∥1
≥ lim

n

|1− 1/n|
(1/n)

= ∞
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Problem 7. Let X be a normed space and A ⊂ X be a subset. Show that A is bounded (as a set) if

and only if it is weakly bounded (that is, f(A) ⊂ C is bounded for each f ∈ X∗).

Proof. ⇒) for all x ∈ A, for all f ∈ X∗, |f(x)| ≤ ∥f∥∥x∥ <∞ so A is weakly bounded

⇐) on the other hand, consider A∗∗ = {a∗∗ | a ∈ A} by a∗∗(f) = f(a) for all f ∈ X∗. Since X∗ is

Banach, and we know

sup
a∗∗∈A∗∗

∥a∗∗(f)∥ = sup
a∈A

|f(a)| <∞ ∀f ∈ X∗

By the uniform boundedness principle, supa∈A ∥a∥ = supa∗∗∈A∗∗ ∥a∗∗∥ <∞.

Problem 8. Let X be a topological vector space.

(a) Define what this means.

Proof. Let X be a vector space, T a topology on X. Then (X, T ) is a topological vector space

provided

• + : X ×X → X is continuous

• · : R×X → X is continuous

(b) Let A ⊂ X be compact and B ⊂ X be closed. Show that A+B ⊂ X is closed.

Proof. Fix z ∈ (A + B)c. For x ∈ A, z − x ∈ Bc so there exists an open neighborhood Vx ∋
0 in X such that (z − x + Vx) ∩ B = ∅. Since addition is continuous, there exists U1x, U2x

neighborhoods of 0 such that U1x + U2x ⊆ Vx.

Ux = U1x∩U2x∩ (−U1x)∩ (−U2x) so Ux = −Ux. Then {x+Ux}x∈A is an open cover of A. Since

A is compact, there exists a finite subcover x1, . . . , xn ∈ A such that

A ⊆
n⋃

i=1

xi + Uxi

Put U =
⋂n

i=1 Uxi
. Then z + U is an open neighborhood of z. If there exists x ∈ A y ∈ B such

that x+ y ∈ z + U then x ∈ xi + Uxi for some i and y ∈ z − x+ U ⊆ z − xi + Uxi ⊆ z − xi + Vxi

but (z − xi + Vxi
) ∩B = ∅. Contradiction!

So (z + U) ∩ (A+B) = ∅.

(c) Give an example indicating that the condition ‘A closed’ is insufficient for the conclusion.

Proof. X = R2, A = {(x, 0) | x ∈ R} and B = {(x, 1/x) | x > 0}. Then A + B = {(x, y) | y >
0}.
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Problem 9. Let (X,M, µ) be a finite measure space. Let f, fn ∈ L3(X, dµ) for n ∈ N be functions

such that fn → f µ-a.e. and |fn| ≤M for all n. Let g ∈ L3/2(X, dµ). Show that

lim
n

∫
fngdµ =

∫
fgdµ.

Proof. |fng| ≤ M |g|. Since µ is a finite measure, M1 ∈ L3(µ). By Holder, M |g| ∈ L1(µ). The result

follows from Dominated Convergence Theorem.

Problem 10. Let X be a σ-finite measure space, and fn : X → R a sequence of measurable func-

tions on it. Suppose fn → 0 in L2 and L4.

(a) Does fn → 0 in L1?

Proof. NOT NECESSARILY.

Let X = R, µ=Lebesgue measure. fn = n−1χ[0,n] so ∥fn∥1 = 1 does not converge to 0, but

∥fn∥2 = n−1/2 → 0 and ∥fn∥4 = n−3/4 → 0.

(b) Does fn → 0 in L3?

Proof. YES.

Since 0 < 2 < 3 < 4 < ∞, L2 ∩ L4 ⊆ L3 and ∥f∥3 ≤ ∥f∥λ2∥f∥1−λ
4 where 1

3 = λ
2 + 1−λ

4 implies

λ = 1
3 . So

∥fn∥3 ≤ ∥fn∥1/32 ∥fn∥2/34 → 0

(c) Does fn → 0 in L5?

Proof. NOT NECESSARILY.

X = [0, 1], µ: Lebesgue measure. Let fn = nχ[0,n−5]. Then ∥fn∥5 = 1 but ∥fn∥2 = n−3/2 → 0

and ∥fn∥4 = n−1/4 → 0.

26 August 2011

Problem 1. Let (X,M, µ) be a measure space.

(a) Give the definitions of convergence a.e. and convergence in measure for a sequence of measur-

able functions on X.

Proof. We say a sequence of measurable functions fn converge to f almost everywhere if µ({x |
limn fn(x) ̸= f(x)}) = 0.

We say that fn converges to f in measure if ∀ϵ > 0, limn µ({x | |f(x)− fn(x)| > ϵ}) = 0.
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(b) Show that every sequence of measurable functions on X which converges in measure to 0 has a

subsequence which converges a.e. to 0.

Proof. Suppose for every ϵ > 0, µ({x | |fn(x)| ≥ ϵ}) → 0. Choose a subsequence {fnk
} such that

if

Ej = {x | |fnj
(x)− fnj+1

(x)| > 2−j}

satisfies µ(Ej) < 2−j . Let Fk =
⋃∞

j=k Ej so µ(Fk) ≤
∑∞

j=k 2
−j ≤ 21−k. Let F =

⋂
k Fk so

µ(F ) = 0.

For x /∈ Fk and for i ≥ j ≥ k then

|fni
(x)− fnj

(x)| ≤
i−1∑
ℓ=j

|fnℓ
(x)− fnℓ+1

(x)| ≤
i−1∑
ℓ=j

2ℓ ≤ 2−j → 0 as k → ∞.

So fnk
is pointwise Cauchy on x /∈ F , so let

f(x) =

{
lim fnk

(x) x /∈ F

0 otherwise

So fnk
→ 0 almost everywhere and fn → f in measure since

µ({x | |fn(x)− f(x)| ≥ ϵ}) ≤ µ({x | |fn(x)− fnℓ
(x)| ≥ ϵ/2})︸ ︷︷ ︸

→0

+µ({x | |fnℓ
(x)− f(x)| ≥ ϵ})︸ ︷︷ ︸

→0

and

µ({x | |f(x)| ≥ ϵ}) ≤ µ({x | |f(x)− fn(x)| ≥ ϵ/2}︸ ︷︷ ︸
→0

+µ({x | |fn(x)| ≥ ϵ/2})︸ ︷︷ ︸
→0

so f = 0 almost everywhere. Thus, {fnk
} converges to 0 almost everywhere.

Problem 2. Let X be a separable Banach space. Show that there exists an isometric linear map

from X into ℓ∞. Also, show that this is false in general if ℓ∞ is replaced by ℓ2.

Proof. Let (xn) be a dense sequence in BX . For each n, use Hahn-Banach Theorem to find a norm-

one functional fn ∈ X∗ with fn(xn) = 1.

Define ϕ : X → ℓ∞ via ϕ(x) =
(
fn(x)

)
. Suppose x ∈ X has norm one and let 1 > ϵ > 0. Choose nϵ

so that ∥xnϵ − x∥ < ϵ. Then

ϵ > |fnϵ
(xnϵ

− x)| = |fnϵ
(x)|

So ∥ϕ(x)∥ = supn |fn(x)| ≥ 1. For every n, |fn(x)| ≤ ∥fn∥∥x∥ = 1 so ∥ϕ(x)∥ ≤ 1. So ∥ϕ(x)∥ = 1

whenever ∥x∥ = 1. Then for all non-zero x, ∥ϕ(x)∥ = ∥x∥ supn |fn(x/∥x∥)| = ∥x∥. So ϕ is an

isometry.
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This is false in general if ϕ were to have its range in ℓ2. Define a map ⟨·, ·⟩X : X → C to be

⟨x, y⟩X := ⟨ϕ(x), ϕ(y)⟩ℓ2 .

Since ϕ is linear and ⟨·, ·⟩ℓ2 is sesquilinear, ⟨·, ·⟩X is sesquilinear. Also, ⟨x, x⟩X = ⟨ϕ(x), ϕ(x)⟩ℓ2 > 0

since ϕ is an isometry x ̸= 0 ⇒ ϕ(x) ̸= 0. Hence ⟨·, ·⟩X is an inner product, and since

∥x∥2 = ∥ϕ(x)∥2 = ⟨ϕ(x), ϕ(x)⟩ = ⟨x, x⟩,

so this inner product generates the norm on X. Since X is a Banach space, it is complete with re-

spect to the inner product, so X is a Hilbert space. But not all separable Banach spaces are Hilbert

spaces: for example, ℓp[0, 1] for 1 ≤ p <∞, p ̸= 2.

Problem 3. Let X be a locally compact metric space and let {xk} be a sequence in X which has no

convergent subsequence. Show that {n−1
∑n

k=1 δxk
} converges to 0 in the weak* topology on C0(X)∗,

where δxk
denotes the point mass at xk.

Proof. Recall that δx(f) = f(x), so δx ∈ C
(
0X)∗. So we want to show 1

n

∑n
k=1 δxk

(f) = 1
n

∑∞
n=1 f(xk) →

0 in C. Since (xk) has no convergent subsequence, by definition of compact (xk) is not frequently in

any set in the collection

Am := {x : |f(x)| ≥ 1

m
}∞m=1.

Let Nm be the number such that n > Nm ⇒ xk /∈ Am. Now |f | is bounded by some number M , so

for n≫ Nm
1
n

∑n
k=1 f(xk) <

2
m . Letting m→ ∞, we are done.

Problem 4. Let P be the set of all polynomials f on [0, 1] such that f(0) = f ′(0) = 0. Determine,

with proof, the values of p with 1 ≤ p ≤ ∞ such that P is dense in Lp[0, 1].

Proof. All 1 ≤ p < ∞. Clearly, P is an algebra which separates points (ex. x2). Stone-Weierstrass

implies P = {f ∈ C[0, 1] | f(0) = 0}. Now for any f ∈ Lp, for all ϵ > 0, there exists some N such

that

∥∥f − fχ[−N≤f≤N ]

∥∥
p
≤ ϵ

2

Define fN = fχ[−N≤f≤N ]. By Lusin’s theorem, there exists a closed set F such that m([0, 1]\F ) ≤
1
2p

ϵp

(2N)p = 1
2p

(
ϵ

2N

)p
. and fN |F continuous.

Tietze extension theorem applied to fN and F implies the extension g is still bounded by N . Then

∥fN − g∥pp =

∫
[0,1]\F

|fN − g|p ≤ (2N)pm([0, 1]\F ) ≤ ϵp

2p

So then

∥f − g∥p ≤ ∥f − fN∥p + ∥fN − g∥p ≤ ϵp

2p
+
ϵ

2
≤ ϵ
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NOT L∞[0, 1] since P = {f ∈ C[0, 1] | f(0) = 0}. If f ∈ L∞[0, 1] with f(0) = a ̸= 0, then ∀g ∈ P,

∥f − g∥∞ = a.

Problem 5. Let 1 < p < ∞ and let {xk}∞k=1 be a sequence in ℓp(N) such that limk xk(n) = 0 for all

n ∈ N. Show that if there is an M > 0 such that ∥xk∥ ≤M for all k ∈ N then xk → 0 weakly.

Also, show that if no such M exists, then {xk} can fail to converge weakly.

Proof. Note: Similar to August 2015, #3, just in a different space now.

Fix some y ∈ ℓq where 1
p + 1

q = 1. We want to show that
∑

n xk(n)y(n) → 0 as k → ∞. Fix ϵ > 0.

Then we may choose a finite A ⊆ N such that
∑

Ac |y(n)|q < ϵq. Since A is finite, choose some K

such that for all k ≥ K we have |xk(n)|p < ϵp

|A| . Then for all k ≥ K, by using Holder, we have

|y(xk)| ≤
∑
n∈N

|xk(n)||y(n)|

=
∑
n∈A

|xk(n)||y(n)|+
∑
n∈Ac

|xk(n)||y(n)|

≤

(∑
n∈A

|xk(n)|p
)1/p(∑

n∈A

|y(n)|q
)1/q

+

(∑
n∈Ac

|xk(n)|p
)1/p(∑

n∈Ac

|y(n)|q
)1/q

≤
(
|A| ϵ

p

|A|

)1/p

∥y∥q +Mϵ

= ϵ (∥y∥q +M)

By making ϵ small enough, we see that |y(xk)| → 0 as k → ∞.

To see why we require (xk) to be bounded, consider p = q = 2. Take

xk = (0, 0, . . . , 0, 2k, 0, . . .) = 2kek y =

(
1

2
,
1

22
, . . . ,

1

2n
, . . .

)

where xk is all zeros except in the kth spot. Then we can see that limk xk(n) = 0 for all n, but that

for all k,

y(xk) =
∑
n

xk(n)y(n) = 2k
1

2k
= 1

Problem 6. Let f ∈ C0(R) and for every t ∈ R define ft ∈ C0(R) by ft(x) = f(x+ t) for all x ∈ R.

(a) Prove that {ft | t ∈ [0, 1]} is compact in the norm topology.

Proof. Similar to August 2013 #1

Since C∞
c (R) is dense in C0(R), we can choose g ∈ C∞

c (R) such that ∥g − f∥∞ < ϵ. Then
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∥ftn − ft∥∞ ≤ ∥ftn − gtn∥∞ + ∥gtn − gt∥∞ + ∥gt − ft∥∞

It’s easy to see ∥ftn − gtn∥∞ and ∥gt− ft∥∞ are small since ∥g− f∥∞ < ϵ. For ∥gtn − gt∥∞, then

∥gtn − gt∥∞ = sup
x∈R

|gtn(x)− gt(x)| = sup
x∈R

|g(x+ tn)− g(x+ t)|

where for each fixed tn → t, since g is compactly supported and continuous then can be suffi-

ciently small for large enough n.

Therefore, the map G : R → C0(R) given by G(t) = ft is continuous. Since {ft | t ∈ [0, 1]} =

G([0, 1]) and continuous maps preserve compactness, then the set is compact in the norm topol-

ogy.

(b) Prove that {ft | t ∈ R} is relatively compact in the weak topology.

Proof. It suffices to show that every sequence in A := {ft|t ∈ [0, 1]} has a convergent subse-

quence in C0(R). (Nets aren’t necessary due to the Eberlein-S̆mulian theorem.) Let (ftn) be a

sequence in A.

We may assume |tn| → ∞. Otherwise (tn) is frequently in some compact set [−m,m] for m ∈
R+. So this subsequence lives in a norm-compact (and hence weak-compact) set by a similar

argument from (a).

Recall from Riesz Representation Theorem for C0(X) that C0(R)∗ ∼= M(R). In particular, since

R is σ-compact, for any µ ∈M(R) we have

|µ(R)− µ([−m,m])| → 0.

Fix ε > 0 and pick m large enough so that |µ(R)− µ([−m,m])| < ε and that

{x : |f(x)| ≥ ε} ⊂ [−m,m]

(since f ∈ C0(R)). Now pick Nm such that n > Nm implies |tn| > 2m. Then

{x : |ftn(x)| ≥ ε} ∩ [−m,m] = ∅.

So we then have

|
∫

|ftn(x)| dµ| ≤ |
∫
[−m,m]

|ftn(x)| dµ|+ |
∫
[−m,m]c

|ftn(x)| dµ|

≤ εµ(R) + εM,

where M := supx∈R |f(x)|. Letting ε→ 0, we see that ftn in fact converges weakly to 0.

Problem 7. Let f be an arbitrary real valued function on [0, 1]. Show that the set of points at

which f is continuous is a Lebesgue measurable set.

Proof. Similar to August 2016, #3.
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In fact, we will prove that the set of points at which f is discontinuous is a countable union of closed

subsets.

f is continuous at p if for all n, there exists an open U containing p such that |f(x) − f(y)| < 1/n

for all x, y ∈ U . Fix n and let

Vn =
⋃
p

{p s.t. there exists an appropriate U} =
⋃

{appropriate U}

Hence, Vn is open. Then

{points where f is continuous} =
⋂
n

Vn

So {points where f is discontinuous} =
⋃

n V
c
n where V c

n is closed.

Problem 8. Show that not every nonempty bounded closed subset of ℓ2 has a point of minimal

norm, but that every nonempty bounded closed convex subset of ℓ2 has a point of minimal norm.

Proof. Let C be the bounded, closed, convex subset of ℓ2. Consider the set {y ∈ R | y = ∥x∥, x ∈ C}
and since this set is bounded below, there exists an infimum of the set, say s. Then we can find a

sequence xn ∈ C such that s ≤ ∥xn∥ ≤ s+ 1
n .

I claim that (xn) is a Cauchy sequence. Indeed, for any ϵ > 0, choose r to be the positive root of

the equation r2 + 2rs− ϵ2

4 = 0.

Since ∥xn∥ → s then there is an N such that s ≤ ∥xn∥ < s+ r for all n ≥ N . If n,m ≥ N , then

∥∥∥∥xm − xn
2

∥∥∥∥2 = 2
∥∥∥xm

2

∥∥∥2 + 2
∥∥∥xn
2

∥∥∥2 − ∥∥∥∥xm + xn
2

∥∥∥∥2 < (s+ r)2

2
+

(s+ r)2

2
− s2 = 2sr + r2 =

ϵ2

4
.

So (xn) is a Cauchy sequence, which means it converges to some x. Since C is closed, x ∈ C and

obtains minimal norm.

Note: This choice of x is unique! If there were two points of minimal norm, say x1 and x2 then
1
2 (x1 + x2) ∈ C by the convexity of C. So s ≤

∥∥ 1
2 (x1 + x2)

∥∥ ≤ 1
2∥x1∥ + 1

2∥x2∥ = s. Hence,

∥x1 + x2∥ = 2s. By the parallelogram law,

∥x1 + x2∥2 + ∥x1 − x2∥2 = 2∥x1∥2 + 2∥x2∥2

And so ∥x1 − x2∥2 = 4s2 − 4s2 = 0 so x1 = x2, proving uniqueness.

Counterexample: Consider M =
{

n+1
n en | n ∈ N

}
. M is closed since the distance between any two

of its elements is greater than
√
2 (and thus the only convergent sequences from M are those that

are eventually constant). M is clearly non-empty and has no element of minimal norm.

Problem 9. Show that there is a sequence {fn} of continuous functions on [0, 1] such that
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(a) |fn(t)| = 1 for all n and all t ∈ [0, 1] and

(b) for all g ∈ L1[0, 1] one has
∫ 1

0
fn(t)g(t)dt→ 0 as n→ ∞

Proof. It helps to know a bit of Fourier analysis for this one. Let fn(t) = eint. Then we need to

show that, for g ∈ L1[0, 1],
∫ 1

0
fn(t)g(t) → 0.

This is surprisingly easy to see for indicator functions. If g = 1[a,b],∫ b

a

fn(t) =
einb − eina

in
→ 0.

This extends simply to simple functions, which approximate L1 functions in L1-norm.

Problem 10. (a) Define what it means for a real valued function on [0, 1] to be absolutely continu-

ous.

Proof. The function f : [0, 1] → R is absolutely continuous if for every ϵ > 0 there exists δ >

0 such that whenever a finite sequence of pairwise disjoint sub-intervals (xk, yk) of [0, 1] with

xk, yk ∈ [0, 1] satisfy
∑

k(yk − xk) < δ then
∑

k |f(yk)− f(xk)| < ϵ.

Equivalently, f has a derivative f ′ almost everywhere and the derviative is Lebesgue integrable

and for all x ∈ [0, 1],

f(x) = f(0) +

∫ x

0

f ′(t)dt.

(b) Prove that if f and g are absolutely continuous strictly positive functions on [0, 1] then f/g is

absolutely continuous on [0, 1].

Proof. Step 1: If f is absolutely continuous, then so is 1/f .

Since f > 0 is continuous on a compact space, there exists some M ∈ N such that 1
M ≤ |f(x)| ≤

M for all x ∈ [0, 1].

Indeed, since g is absolutely continuous then for every ϵ > 0, there exists a δ > 0 such that

whenever a finite sequence of pairwise disjoint sub-intervals (xk, yk) of [0, 1] with xk, yk ∈ [0, 1]

satisfy
∑

k(yk − xk) < δ then
∑

k |f(yk)− f(xk)| < ϵ
M2 . Then for such intervals, we have

∑∣∣∣∣ 1

f(yk)
− 1

f(xk

∣∣∣∣ =∑∣∣∣∣f(xk)− f(yk)

f(yk)f(xk)

∣∣∣∣
≤
∑∣∣∣∣ 1

f(yk)

∣∣∣∣ ∣∣∣∣ 1

f(xk)

∣∣∣∣ |f(yk)− f(xk)|

≤M2
∑

|f(yk)− f(xk)|

=M2 ϵ

M2
= ϵ.

Step 2: If f and g are both absolutely continuous, then so is fg.
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Find M ∈ N such that |f(x)|, |g(x)| ≤M for all x ∈ [0, 1].

Take δ1 such that if
∑
yk −xk < δ1 then

∑
|f(yk)− f(xk)| < ϵ/2M . Similarly, take δ2 such that

if
∑
yk − xk < δ2 then

∑
|g(yk)− g(xk)| < ϵ/2M . Let δ = min(δ1, δ2). Now

∑
|(fg)(yk)− (fg)(xk)| =

∑
|f(yk)g(yk)− f(xn)g(xn)|

≤
∑

|f(yk)g(yk)− f(yk)g(xk)|+ |f(yk)g(xk)− f(xk)g(xk)|

≤
∑

|f(yk)||g(yk)− g(xk)|+
∑

|g(xn)||f(yk)− f(xk)|

≤M
∑

|g(yk)− g(xk)|+M
∑

|f(yk)− g(xk)|

≤M
ϵ

2M
+M

ϵ

2M

= ϵ

Combining the two steps, we see immediately that f/g is absolutely continuous.

27 January 2011

Worth noting before we begin that this is a Johnson qual in January, which means it is particularly

challenging in relation to other quals.

Problem 1. Working directly from thedefinition of almost everywhere convergence, prove that if

(fn)
∞
n=0 is a sequence of measurable functions on a measure space (X,M, µ) such that∫

X

|fn − f0|1/4 dµ < n−2

for each n, then (fn)
∞
n=1 converges to f0 µ-almost everywhere.

Proof. Let (fnk
) be an arbitrary subsequence of (fn). Then |fnk

− f0|1/4 → 0 in L1, so there is a

further subsequence |fnkj
− f0|1/4 → 0 a.e. By the commonly used lemma that (xn → x ⇐⇒ for

every subsequence xnk
there is a further subsequence xnkj

converging to x), |fn − f0|1/4 → 0 a.e.

Hence so does |fn − f0|, so fn → f0 a.e.

Problem 2. Let K be a compact metric space. Show that C(K) is separable.

Proof. We separate this into three parts:

(1) Any compact metric space is separable. We have
⋃

x∈X B( 1n , x) = K for all n, so for each n

there exists a finite subcover

(B(
1

n
, xni ))

kn
i=1.

We claim the collection {xni , i ∈ [kn], n ∈ N} is dense in K. Let y ∈ K; then for each n y ∈ B( 1n , x
n
iy
)

for some iy ∈ [kn]. Then x
n
iy

→ y.
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(2) There is a countable collection of continuous functions in C(K) that separates points. Any met-

ric space is Hausdorff, and compact Hausdorff spaces are normal. Define fni ∈ C(K, [0, 1]) to be

such that

fni (B(
1

2n
, xni )) ⊂ {1} and fni |B( 1

n ,xn
i )

c ≡ 0.

Then the collection (fni ) separates points. Indeed for any x, y ∈ K such that d(x, y) = ε > 0, let

n be such that 1
n < ε ≤ 1

n−1 . Then there exists xiN for N > 2n such that d(xiN , x) <
1
4n . So

f iN (x) = 1. But

d(xiN , y) ≥ d(x, y)− d(xiN , x) >
1

n
− 1

4n
=

3

4n
.

So f iN (y) = 0.

(3) The rest. The algebra generated by the rational span of 1 and (f in) is countable (clearly the

span is countable; then the algebra is generated by taking the countable union of sets {f1 × · · · ×
fk : fj ∈ (f in)} of cardinality |N×k| for k ∈ N, each of which is countable). What’s more, Stone-

Weierstrass implies this algebra is dense in C(K). So C(K) is separable.

Problem 3. Let (fn)
∞
n=1 be a sequence of measurable functions on a finite measure space (X,M, µ).

Recall that (fn)
∞
n=1 is said to be uniformly integrable if for every ε > 0 there exists a δ > 0 such that

|
∫
E

fn dµ| < ε

for all measurable sets E ⊂ X satisfying µ(E) < δ and all n. Prove that if (fn)
∞
n=1 is uniformly

integrable, supn∥fn∥1 <∞, and (fn)
∞
n=1 converges in measure to 0, then ∥fn∥1 → 0 as n→ ∞.

Proof. Some may know this as a special case of the Vitali Convergence Theorem (see Exercise 15

in Chapter 6 of Folland). Let (fnk
) be a subsequence of (fn); then there is a further subsequence

(fnkj
) convergent to 0 a.e. By Egoroff, there is a set A with µ(A) < δ) such that (fnkj

) uniformly

convergenes to 0 uniformly on Ac. Let N be such that

sup
Ac

|fnkj
| ≤ ε

for k ≥ N . Then ∫
X

|fnkj
| dµ ≤ εµ(X) +

∫
A

|fnkj
|
Uniform convergence

≤ εµ(X) + ε.

Since our subsequence (fnk
) was arbitrary, fn → 0 in L1.

Problem 4. Let 1 ≤ p < ∞ and let f be a positive element of Lp[0, 1]. Prove that the set {f1/n :

n ∈ N} has compact closure in Lp[0, 1]. Give an example to show that this is false when p = ∞.

Proof. Let us begin with the case where p = ∞. Define f(x) = x. Then ∥1 − x
1
n ∥∞ = 1 for all n.

Hence the set {f1/n} is in fact closed. However, the sequence (f1/n)∞n=1 does not have a convergent

subsequence.
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We now return to where 1 ≤ p <∞. Let f ∈ Lp[0, 1] and define g := 1{f(x)>0}. We have∫
|f1/n − g|p =

∫
{0<f(x)<1}

|f1/n − g|+
∫
{f(x)≥1}

|f1/n − g|.

Note that DCT (or MCT) allows us to pass limits through each integral. So

lim
n→∞

|f1/n − g|p =

∫
lim
n→∞

|f1/n − g|p.

A logarithm argument shows that limn→∞ f1/n = g. So g is in the closure of {f1/n}, and any se-

quence in {f1/n} ∪ {g} has a convergent subsequence (if no element is in the sequence infinitely

many times, then we can find a subsequence of f1/n where n goes to infinity, which converges to

g).

Problem 5. Let X be a reflexive Banach space and K a non-empty closed convex subset of X.

Prove that there exists an x ∈ K such that ∥x∥ = infy∈K∥y∥. Show that this x is unique in the

case that X is a Hilbert space.

Proof. Compare this to Exercise 59 in Chapter 5 of Folland, although we may need to make a slightly

different approach for the first part of the problem.

Let a := infy∈K∥y∥, and take (yn) ⊂ K such that ∥yn∥ → a. By applying Alaoglu to X∗ and noting

X = X∗∗, there exists a subsequence (ynj ) such that (ynj ) weakly converges to some y ∈ X. (I.e.,

(∥yn∥) is bounded by M , and since the M -ball in X∗∗ is wk*-compact by Alaoglu, there exists a

subsequence of (ynj
) that weak*-converges in the M -ball, which is the same as weakly converging in

X.) Now f(y) = lim f(ynj
) for all f ∈ X∗ with ∥f∥ = 1, so

∥y∥ = sup
∥f∥=1

∥f(y)∥ = sup
∥f∥=1

lim∥f(ynj )∥

= lim∥ynj
∥ = a.

(It is important that we can give an equality where the indent is; this is possible since for each nj
one can give a norm-one linear functional such that f(ynj

) = ∥ynj
∥.) Since the ynj

converge in

norm to y and K is closed, y ∈ K.

We now assume X is a Hilbert space. We need to use the parallelogram law to guarantee unique-

ness. Say that z, z′ ∈ K such that ∥z∥ = infy∈K∥y∥ = ∥z′∥. Then by convexity
z + z′

2
and

z − z′

2
are in K as well. Note the addition of these two elements is z and the subtraction of these two is z′.

So

2∥z∥2 = ∥z∥2 + ∥z′∥2 = 2(∥z + z′

2
∥)2 + ∥z − z′

2
∥2)

⇒ ∥z∥2 = ∥z + z′

2
∥2 + ∥z − z′

2
∥2 ≥ ∥z + z′

2
∥2 ≥ ∥z∥2.

This last equality comes from the fact that z has minimum norm in K. So equality holds in this

last line. But this means ∥ z−z′

2 ∥ = 0 ⇒ 0 = z − z′ ⇒ z = z′.

Problem 6. Let X be a Banach space such that X∗ is separable. Prove that X is separable.
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Proof. Let (fn)
∞
n=1 be a dense subset of the unit sphere S in X∗. For each n ∈ N, pick xn ∈ X

such that |fn(xn)| > 1
2 . Let Y = span{xn} and observe that Y is separable (consider finite rational

combination of (xn)). We want to show that X = Y ; suppose not. Then there is an f ∈ S such that

f |Y = 0. Now the fn are dense in S, so pick n such that ∥fn − f∥ < 1
4 . But |(fn − f)(xn)| > 1/2

since f(xn) = 0, contradicting our choice of n.

Problem 7. (a) State what it means for a function f : R → R to be absolutely continuous.

(b) Let F : R → R be a function and let 0 ≤ M < ∞. Show that |f(x) − f(y)| ≤ M |x − y| for
all x, y ∈ R iff f is absolutely continuous and |f ′(x)| ≤ M almost everywhere with respect to

Lebesgue measure.

Proof. (a) The definition of absolute continuity can be found at (3.31) in Folland. f is absolutely

continuous if ∀ε > 0 ∃δ > 0 such that for any finite set of disjoint interval ((ai, bi))
N
i=1,

N∑
1

(bj − aj) < δ ⇒
N∑
1

|f(bj)− f(aj)| < ε.

(b) (⇐) Say WLOG y > x. Then |f(y)− f(x)| = |
∫ y

x
f ′(t) dt| ≤M |y − x|.

(⇒) For any ε > 0, pick δ = ε
M . Then if ((ai, bi))

N
1 are disjoint intervals such that

∑N
1 (bj − aj) < δ,

we have
N∑
1

|f(bj)− f(aj)| ≤M

N∑
1

|bj − aj | < ε.

By the fundamental theorem of calculus, f is differentiable a.e. What’s more,

|f ′(x)| = lim
y→x

|f(x)− f(y)|
|x− y|

≤M.

Problem 8. For a function f : [0, 1] → R define

∥f∥L = |f(0)|+ sup{ |f(x)− f(y)|
|x− y|

: 0 ≤ x < y ≤ 1.

Prove that the set of all functions f : [0, 1] → R satisfying ∥f∥L <∞ is dense in L1[0, 1].

Proof. Note that these were defined as 1-Hölder continuous functions in Exercise 11 of Chapter 5

in Folland. 1-Hölder continuous functions are indeed (uniformly) continuous; this supremum is the

required constant C to see that |f(x) − f(y)| ≤ C|x − y|. So we would like to show that these are

dense in C[0, 1], then apply Theorem 2.26 to say C[0, 1] is dense in L1[0, 1]. (Since ∥·∥L1 ≤ ∥·∥L∞ on

finite measure sets, the L1-closure of a set in L1[0, 1] ∩ C[0, 1] is contained in the uniform closure; a

similar argument is done in working through Exercise 62 of Chapter 5 in Folland.)

To see this, note that continuously differentiable functions are 1-Hölder continuous, as this supre-

mum can be taken to be the max of |f ′| on [0, 1]. Of course polynomials are continuously differen-

tiable, so we are done.
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Problem 9. Let g : [0, 1] → [0, 1] be a continuous function. Determine, with proof, conditions on g

which are equivalent to the property that limn→∞∥gnf∥2 = 0 for all f ∈ L2[0, 1].

Proof. We know it must be true that gn → 0 in L2. This is since

∥gnf∥2 =

∫
|f |2gn = ⟨|f |2, gn⟩.

So if limn∥gnf∥ = 0, then limn g
n must be orthogonal to all of L2. But C[0, 1] ⊂ L2[0, 1], so limn g

n

must be zero a.e. So we must have g be such that m({g(x) = 1}) = 0.

It turns out this is the equivalent condition. WLOG g(x) < 1 for all x, and DCT implies |gnf |2 ≤
|f |2. So

lim
n

∫
gn|f |2 =

∫
0|f |2 = 0.

Problem 10. (a) State Fubini’s theorem.

(b) Let (fn)
∞
n=1 be a bounded sequence in C([0, 1]2). Suppose that fx,n → 0 weakly in L2(µ) for

every x ∈ [0, 1], where fx,n(y) = fn(x, y) for all y ∈ [0, 1] and µ is Lebesgue measure on [0, 1].

Prove that fn → 0 weakly in L2(µ× µ).

Proof. (a) Fubini’s theorem is Theorem 2.37b in Folland. If f ∈ L1(µ, ν) for σ-finite measures µ, ν,

then fx ∈ L1(ν) for a.e. x ∈ X, fy ∈ L1(µ) for a.e. y ∈ Y , the a.e.-defined functions g(x) =
∫
fx dν

and h(x) =
∫
fy dν are in L1(µ) and L1(ν), respectively, and∫

f d(µ× ν) =

∫ [∫
f(x, y) dν(y)

]
dµ(x)

=

∫ [∫
f(x, y) dµ(x)

]
dν(y).

(b) Let M := supn∥fn∥∞. We want to show that, for any g ∈ L2(µ× µ),∫
fng d(µ× µ) → 0

as n→ ∞. We have ∫
|fng| d(µ× µ) ≤M∥g∥2,

so fng ∈ L1. Fubini applies and we get∫
fng d(µ× µ) =

∫ [∫
(fng)x(y) dµ(y)

]
dµ(x)

=

∫ [∫
fx,n(y)gx(y) dµ(y)

]
dµ(x).

Since fx,n → 0 weakly in L2(µ), this inner integral, which we will call hn(x), goes to 0 (as n → ∞)
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for a.e. x. Fubini also tells us hn(x) ∈ L1. Finally, Fubini again tells us that gx ∈ L2 ⊂ L1, so

|
∫
fx,n(y)gx(y)| ≤M |

∫
gx(y)| ≤M∥gx∥1,

which is an L1 constant function in [0, 1]. Hence DCT applies and

lim
n→∞

∫
fng d(µ× µ) = lim

n→∞

∫
hn(x) dµ(x)

=

∫
lim
n→∞

hn(x) dµ(x) =

∫
0 dµ(x) = 0.

Since g was arbitrary, fn → 0 weakly in L2(µ× µ).

28 August 2010

Problem 1. (a) Give an example of a sequence (fn) in L1[0, 1] such that limn→∞∥fn∥L1
= 0, but

(fn) does not converge to 0 almost everywhere.

(b) Show that if a sequence (fk) in L1[0, 1] satisfies ∥fk∥L1
≤ 2−k for k ≥ 1, then fk → 0 a.e.

Proof. (a) For n ≥ 0, 1 ≤ i ≤ 2n,

f2n+i = 1[ i−1
2n , i

2n ].

Note
⋃2n

i=1 = [0, 1] for all n, so for a.e. x fk(x) = 1 for infinitely many k. Yet ∥f2n+i∥L1
= 1

2n → 0.

(b) We have
∑∞

n=1

∫
|fn| = 1, so by DCT (Theorem 2.25)

∑
n fn converges a.e. Hence fk = (

∑k
n=1 fn−∑k−1

n=1 fn) → 0 a.e.

Problem 2. Let E be a subset of [0, 1] with positve outer Lebesgue measure, i.e. m∗(E) > 0. Show

that for each α ∈ (0, 1) there is an interval I ⊂ [0, 1] so that

m∗(E ∩ I) ≥ αm(I).

Proof. Compare this to Exercise 30 in Chapter 1 of Folland. The only difference is that E is not

necessarily Lebesgue measurable; this may affect some solutions of the exercise.

Suppose not, and let α ∈ (0, 1) such that for any open interval I, m∗(E ∩ I) ≤ αm(I). By outer

measurability, let Uε :=
⋃∞

j=1 I
ε
j be an open set such that m(Uε) < m∗(E) + ε for some ε we will

choose later. (WLOG one may ask the Iεj to be disjoint.) Then

m∗(E) = m∗(E ∩ (

∞⋃
j=1

Iεj ) ≤
∞∑
j=1

m(E ∩ Iεj )

≤ αm∗(Iεj ) = αm∗(Uε).
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As ε → 0, m∗(Uε) approaches m∗(E). This is a contradiction with the fact that m∗(E) ≤ αm∗(Uε).

Problem 3. Let X be a Banach space and let (xn) be sequence in x that converges weakly to 0.

Prove that (∥xn∥) is bounded.

Proof. This is a Uniform Boundedness problem. We have ∥f(xn)∥ → 0 for all f ∈ X∗; hence if · 7→ ·̂
is the natural inclusion of X into X∗∗, we have

sup
n
∥x̂n(f)∥ <∞.

This implies

sup
n
∥x̂n∥ <∞

by Uniform Boundedness, and since · 7→ ·̂ is an isometry, (∥xn∥) is bounded.

Problem 4. (a) Let (fn) be a bounded sequence in C[0, 1]. Prove that

(fn) converges weakly to 0 ⇐⇒ (fn) converges pointwise to 0.

(b) Assume that (fn) ⊂ C[0, 1] converges in the weak topology. Show that fn is norm convergent in

L1[0, 1]. [For part (b) you may use problem (3).]

Proof. (a) (⇒) For x ∈ [0, 1], define x̂(f) = f(x). Since x̂(λf + g) = λf(x) + g(x) = λx̂(f) + x̂(g), x̂

is linear. So ̂[0, 1] ⊂ C[0, 1]∗. Hence if (fn) converges weakly to 0, so does x̂(f) = f(x) for x ∈ [0, 1].

(⇐) We use the Riesz representation for C[0, 1]. Suppose (fn) converges pointwise to 0 and let µ be

a complex Radon measure for [0, 1]. Of course µ([0, 1]) < ∞ since [0, 1] is compact. In particular, if

|fn| ≤M for all n for some M > 0, M1 ∈ L1(µ), so DCT applies and

lim
n→∞

∫
fn dµ =

∫
0 dµ.

So if ϕµ ∈ C[0, 1]∗ is the corresponding state, ϕµ(fn) =
∫
fn dµ→ 0.

(b) Let f be the weak limit of fn (in particular, f ∈ C[0, 1]); then (fn − f) converges weakly to 0

in C[0, 1]. Hence by (3) (∥fn − f∥∞) is bounded, say by M . So (4a) applies and (fn − f) converges

pointwise to 0. Now Egoroff gives us a set Eε such that m(Eε) < ε and fn − f converges uniformly

on Ec
ε . Then

lim
n→∞

∫
|fn − f | dm ≤ lim

n→∞

∫
Ec

ε

|fn − f | dm+M
ε

2

In particular, if n is large enough so that |fn − f | < M ε
2 on Ec

ε , we get

lim
n→∞

∫
|fn − f | dm ≤Mε.

Letting ε→ 0, we are done.
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Problem 5. Let f : R → R be a measurable function such that for some C > 0

m{x : |f(x)| ≥ λ} ≤ Cλ−2, for all λ > 0.

Prove that there is some C ′ > 0 so that∫
e

|f(x)| dx ≤ C ′
√
m(E), for all measurable E ⊂ R.

Proof. If m(E) is infinite, this trivially holds, so we assume m(E) <∞. We note the fact that

m({x ∈ E : |f(x)| ≥ y}) ≤ min(
C

y2
,m(E)).

Let N =
C1/2

(m(E))1/2
. Then

∫
E

|f(t)| dt =
∫
E

∫
y≤|f(t)|

dy dt

Tonelli
=

∫ ∞

0

∫
|f(t)|≥y

t∈E

dt dy

=

∫ ∞

N

m{t ∈ E : |f(t)| ≥ y} dy +
∫ N

0

m{t ∈ E : |f(t)| ≥ y} dy

≤
∫ ∞

N

C

y2
dy +

∫ N

0

m(E) dy

= C[−1

y
]∞N +m(E)N

= C1/2m(E)1/2 +m(E)1/2C1/2 =: C ′m(E)1/2.

Problem 6. Let f(x) be a continuous function on [0, 1] with a continuous derivative f ′(x). Given

ε > 0, prove that there is a polynomial p(x) so that

∥f(x)− p(x)∥∞ + ∥f ′(x)− p′(x)∥∞ < ε.

Proof. Use Stone-Weierstrass to find a polynomial q such that ∥f ′−q∥∞ < ε
2 . Let p be a polynomial

such that p′ = q and p(0) = f(0). Then since f(x) =
∫ x

0
f ′(x) dx+f(0) and p(x) =

∫ x

0
q(x) dx+p(0),

we get

sup
x∈[0,1]

|f(x)− p(x)| = sup
x∈[0,1]

|
∫ x

0

f ′ − q dm|

≤ ∥f ′ − q∥∞m([0, 1]) =
ε

2
.

Problem 7. Let X be a non-empty complete metric space and let

(fn : X → R)∞n=1
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be a sequence of continuous functions with the following property: for each x ∈ X, there exists

an integer Nx so that (fn(x))n≥Nx
is either a monotone increasing or decreasing sequence. Prove

that there is a non-empty open subset U ⊂ X and an integer N so that the sequence (fn(x))n≥N is

monotone for all x ∈ U .

Proof. With this contorted language, this can’t not be a Baire Category Theorem problem. Define

XN := {x ∈ X : (fn(x))n≥N is monotonically increasing or decreasing}.

It is not hard to show that Xn is closed: if xn → x such that fm+1(xn) ≥ fm(xn) for all n, then

since fm+1(xn) → fm(x) and fm(xn) → fm(x), it must be true that fm+1(x) ≥ fm(x).

We now show that, if there exists an open set V an integer N such that (fn(x))n≥N is monotoni-

cally increasing or decreasing for all x ∈ V , then there is a set U as in the problem (i.e., using the

same integer N , fn is eventually monotonic in one direction only on U). Take X ′
1 := {x ∈ X : fn(x)

is eventually monotonically increasing} and X2 := (X1)
c. The union of these is X, and by a similar

argument to the above each are also closed, so by Baire Category Theorem one of these contains an

open set, proving our claim.

Hence if such a U as above doesn’t exist, such a V doesn’t either, so the XN ’s are nowhere dense

and Baire Category Theorem (again, again!) completes the proof.

Problem 8. Assume that 1 ≤ p < ∞ and that a linear operator T : Lp[0, 1] → Lp[0, 1] is such that

(Tfn) converges almost everywhere to 0 if (fn) converges almost everywhere to 0. Show that T is a

bounded operator on Lp[0, 1].

Proof. This problem’s solution may use (maybe unexpectedly) the Closed Graph Theorem. Suppose

(fn, Tfn) → (0, h) in the graph of Lp[0, 1]
2. We want to show h = T (0), since then CGT would

imply Tk is continuous at 0 and hence is bounded.

We have fn → 0 in Lp. Then f
p
n → 0 in L1, so there is a subsequence fpnk

that converges to 0 a.e.

Hence fnk
→ 0 a.e.

By similar reasoning there is a further subsequence fnkj
such that Tfnjk

→ h a.e. By assumption,

Tfnjk
→ 0 a.e., so h = 0 a.e. Therefore h = T (0) = 0.

Problem 9. (a) State the Hahn-Banach Theorem for real vector spaces.

(b) Deduce from it the following corollary: Let X be a Banach space, Y ⊂ X a closed subspace and

x ∈ X\Y . Show that there is an x∗ ∈ X∗ such that x∗|Y ≡ 0 and x∗(x) = 1.

Proof. See Section 5.2 of Folland, noting especially Theorem 5.8a.

Problem 10. Let U be the closed unit ball in the Banach space C[0, 1] of continuous real valued

functions on the unit interval. Prove that the extreme points of U are the constant functions ±1.

Prove that C[0, 1] is not a dual Banach space.

Proof. Define the functions

g(x) := f +
1

2
(1− |f |), h(x) := f − 1

2
(1− |f |).
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Then f = 1
2 (g + h). Note that if f ̸= ±1, g ̸= f ̸= h, so we only need show ∥g∥∞, ∥h∥∞ ≤ 1.

|g(x)| = 1

2
|f(x)|+ 1

2
≤ 1,

|h(x)| = 3

2
|f(x)| − 1

2
≤ 1.

Now clearly if 1 = 1
2f + 1

2g for f, g ∈ C[0, 1], then f(x) < 1 ⇒ g(x) > 1, which cannot happen. So

f ≡ 1 ≡ g, and ±1 are the extreme points of U .

Now if C[0, 1] is a dual Banach space, Alaoglu implies its unit ball is weak*-compact. Since this

space is clearly convex, Krein-Milman would imply that U = λ1 for λ ∈ [−1, 1], which is clearly

untrue.

29 January 2010

Problem 1. Is it possible to find uncountably many disjoint measurable subsets of R with strictly

positive Lebesgue measure?

Proof. No! We first test to see whether this might be true on [−n, n] for n ∈ N. Say (Eα) is some

collection of disjoint measurable sets contained in [−n, n]. Then∑
α

m(Eα) ≤ m([−n, n]) <∞,

and an elementary argument shows that #{α : m(Eα) > 0} is countable. (For those who have not

seen it before: we have {α : m(Eα) > 0} =
⋃∞

n=1{α : m(Eα) >
1
n}, and each of these latter sets

must be finite since the sum is finite.)

We now apply a very similar argument for (Eα) contained in R: in particular, m(En) =
⋃∞

n=1m(En∩
[−n, n]) by continuity from below, so {α : m(Eα) > 0} =

⋃∞
n=1{α : m(Eα ∩ [−n, n]) > 0}. By the

above paragraph each of the sets in this union is countable, so {α : m(Eα) > 0} is countable.

Problem 2. Let f be a non-negative element of L1[0, 1]. Prove that

lim
n→∞

∫ 1

0

n
√
f(x) dx = m({x : f(x) > 0}).

Proof. We can split this integral into∫
{x:f(x)≤1}

n
√
f(x) dx+

∫
{x:f(x)>1}

n
√
f(x) dx =: A+B.

DCT applies to both, with 1 being the dominating function for A and f being the dominating func-

tion for B. (MCT also works fine.) So

lim
n→∞

∫ 1

0

n
√
f(x) dx =

∫ 1

0

lim
n→∞

n
√
f(x) dx.
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Note

log lim
n→∞

f(x)1/n = lim
n→∞

1

n
log f(x) = 0 when f(x) ̸= 0,

so limn→∞
n
√
f(x) = 1 when f(x) ̸= 0. When f(x) = 0, n

√
f(x) = 0 for all n, so

lim
n→∞

∫ 1

0

n
√
f(x) dx =

∫ 1

0

1{x:f(x)>0} dx = m({x : f(x) > 0}).

Problem 3. (a) Let X be a Banach space with a closed subspace E. If x ∈ X, prove that there

exists ϕ ∈ X∗ such that ∥ϕ∥ = 1, ϕ|E = 0, and

ϕ(x) = dist(x,E).

(b) Taking X = C[−1, 1] and E to be the subspace of even functions (f(t) = f(−t)), consider an odd

function g ∈ X (g(−t) = −g(t)). Prove that there exists ϕ ∈ X∗, ∥ϕ∥ = 1, ϕ|E = 0, and

ϕ(g) = ∥g∥∞.

Proof. (a) Compare this problem with Theorem 5.8a. Define ϕ : E + λx→ C to be

ϕ(e+ λx) = λ dist(x,E).

Then ϕ|E = 0, ϕ(x) = dist(x,E), and

|ϕ(e+ λx)| ≤ |λ| inf{∥x+ e′∥ : e′ ∈ E}
≤ |λ|∥λ−1e+ x∥ = ∥e+ λ∥,

a sublinear functional. We have also shown that ∥ϕ∥ ≤ 1; to see ∥ϕ∥ = 1, take λ = 1 and take a

sequence of e′ that approximates dist(x,E). Hahn-Banach completes the proof.

(b) Due to (a), we need to only show a couple things. First, we note that E is closed. This comes

directly from continuity of the norm: ∥h(x)− h(−x)∥ = limn→∞∥hn(x)− hn(−x)∥ = 0.

Second, we want to show: if f is even and g is odd,

∥f − g∥∞ ≥ ∥g∥∞.

If |(f − g)(x)| ≤ |g(x)|, then |(f − g)(−x)| = |f(x) + g(x)|. Since 2|g(x)| ≤ |(f − g)(x)|+ |(f + g)(x)|,
we get |(f − g)(−x)| = |(f + g)(x)| ≥ |g(x)|. Hence supy∈[0,1] |(f − g)(y)| ≥ |g(x)| for all x ∈ [0, 1],

so ∥f − g∥∞ ≥ ∥g∥∞. The reverse inequality comes from choosing f ≡ 0: ∥0 − g∥∞ = ∥g∥∞. Hence

dist(g,E) = ∥g∥∞ and the rest is due to (a).

Problem 4. Let m be Lebesgue measure on [0, 1]. If (fk)
∞
k=1 and (gk)

∞
k=1 are orthonormal bases for

L2([0, 1],m), prove that (fk(x)gℓ(y))
∞
k,ℓ=1 is an orthonormal basis for L2([0, 1]× [0, 1],m×m).

Proof. Compare this to Exercise 61 in Chapter 5 of Folland.
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First, we want to show that this set is orthonormal. Note

⟨fkgℓ, fkgℓ⟩ =
∫

|f̄kfk|2 dx
∫

|ḡℓgℓ|2 dy

= ∥fk∥2∥gk∥2 = 1.

And if k ̸= k′ [resp. ℓ ̸= ℓ′],

⟨fkgℓ, fk′gℓ′⟩ = ⟨fk, fk′⟩⟨gℓ, gℓ′⟩ = 0

(we are using the common trick here of using Tonelli to show fkgℓfk′gℓ′ ∈ L1, then using Fubini to

get the equality here). So this is an orthonormal set. (We have also shown that fkgℓ ∈ L2([0, 1] ×
[0, 1]).)

Now assume h ∈ L2([0, 1]× [0, 1]) is a function such that

⟨h(x, y), fk(x)gℓ(x)⟩ = 0 ∀k, ℓ.

Then Fubini applies to the below since these functions are in L1 due to Hölder:∫
[0,1]2

h(x, y)f̄k(x)ḡℓ(y) =

∫
ḡℓ[

∫
f̄kh

y(x) dx] dy = 0

gℓ onb⇒
∫
f̄kh

y(x) = 0

fk onb⇒ hy(x) = h(x, y) = 0,

where k, ℓ above are arbitrary. So (fkgℓ) is complete and hence an orthonormal basis.

Problem 5. In C[0, 1], let

A = span{xn(1− x) : n ≥ 1}.

Prove that A is an algebra whose uniform closure is

{f ∈ C[0, 1] : f(0) = f(1) = 0}.

Proof. A main consideration is determining how to apply Stone-Weierstrass whenever our func-

tions are equivalently zero at two points. One way to do it is to consider the one-point compacti-

fication of [0, 1). Here is another: there exists a natural homeomorphism between T and [0, 1]/{0, 1}
(namely, x 7→ e2πix), which induces an isometric algebra isomorphism C(T) = {f ∈ C[0, 1] : f(0) =

f(1)}. T is a compact Hausdorff space as it is a closed subset of C, so it suffices to show that

span{xn(1− x) : n ≥ 1}

is an algebra that separates points. (It is closed under conjugation by definition of span; note our

domain is in R.)

We note

xn(1− x)xm(1− x) = xn+m(1− x)− xn+m+1(1− x),

so the span of these elements are closed under multiplication, which is enough to show this span is
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an algebra. Note that

fk(x) =

k∑
n=1

xn − xn+1

approximates the polynomial x uniformly on any closed interval not including 0=1, so if a ̸= b for

a, b /∈ {0} there is some k such that fk separates them. Clearly f(0) = 0 for all f ∈ A, and for a ̸= 0

fk(a) is eventually nonzero.

Hence Stone-Weierstrass applies and this algebra equals

{f ∈ C(T) : f(1) = 0} = {f ∈ C[0, 1] : f(0) = f(1) = 0}.

Problem 6. (a) State the Riesz representation theorem for the dual of Lp(µ), where µ is a σ-finite

measure on some measurable space (Ω,Σ, µ), and 1 ≤ p <∞.

(b) Prove the following part of the above theorem (you can assume µ is finite): Let f ∈ Lp(µ)
∗.

Then there is a g ∈ L1(µ) so that ∫
a

g dµ = F (χA),

for all A ∈ Σ.

Proof. Compare this to Theorem 6.15 in Folland.

(a) This theorem states the following for σ-finite µ: “Let p and q be conjugate exponents. If 1 ≤
p < ∞, for each ϕ ∈ (Lp)∗ there exists g ∈ Lq such that ϕ(f) =

∫
fg for all f ∈ Lq. and hence Lq is

isometrically isomorphic to (Lp)∗.

(b) First let us suppose that µ is finite, so that all simple functions are in Lp. If ϕ ∈ (Lp)∗ and

E is a measurable set, let ν(E) = ϕ(χE). For any disjoint sequence (Ej), if E =
⋃∞

1 Ej we have

χE =
∑∞

1 χEj where the series converges in the Lp norm:

∥χE −
n∑
1

χEj
∥p = ∥

∞∑
n+1

χEj
∥p = µ(

∞⋃
n+1

Ej)
1/p → 0 as n→ ∞.

Hence, since ϕ is linear and continuous,

ν(E) =

∞∑
1

ϕ(χEj
) =

∞∑
1

ν(Ej),

so that ν is a complex measure. Also, if µ(E) = 0, then χE = 0 as an element of Lp, so ν(E) = 0;

that is, ν ≪ µ. By the Lebesgue-Radon-Nikodym theorem there exists g ∈ L1(µ) such that ϕ(χE) =

ν(E) =
∫
E
g dµ for all E.

Problem 7. Let 1 < p <∞ and f ∈ Lp[0,∞). Show that

a) |
∫ x

0

f(t) dt| ≤ ∥f∥px1−
1
p , for x > 0.
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b) lim
n→∞

1

x1−
1
p

∫ x

0

f(t) dt = 0.

Hint for part b): first assume that f as compact support.

Proof. a) We have

|
∫ x

0

f(t) dt| ≤
∫

|f1[0,x]| dt = ∥f1[0,x]∥

Hölder
≤ ∥f∥p∥1[0,x]∥1− 1

p
= ∥f∥px1−

1
p .

b) If f has compact support, there is some x0 > 0 such that f(x) = 0 for x > x0. Then

lim
x→∞

| 1

x1−
1
p

∫ x

0

f(x) dt| ≤ lim
x→∞

∥f∥p
(x0
x

)1− 1
p

= 0.

Now for arbitrary f ∈ Lp and ε > 0, there is some x0 > 0 such that
∫∞
x0

|f |p < ε. Then for x≫ x0,

lim
x→∞

| 1

x1−
1
p

∫ x

0

f(x) dt| ≤ lim
x→∞

| 1

x1−
1
p

∫ x0

0

f(x) dt|+ lim
x→∞

| 1

x1−
1
p

∫ x

x0

f(x) dt|

(a)

≤ lim
x→∞

1

x1−
1
p

∥f1[x0,∞)∥px1−
1
p = 0.

Problem 8. Let X be a finite-dimensional vector space.

(a) If ∥·∥ is a norm on X, prove that (X, ∥·∥) is complete.

(b) If ∥·∥1 and ∥·∥2 are two norms on X, prove that there exist constants c, k > 0 such that

c∥x∥1 ≤ ∥x∥2 ≤ k∥x∥1, x ∈ X.

(Hint: note that without loss of generality ∥·∥1 can be chosen to be, say, the ℓ1-norm with re-

spect to some basis.)

Proof. Let (ei)
n
1 be a basis for X.

(a) For the first statement it suffices to show that, when (
∑n

i=1 a
j
iei)j ⊂ X such that

∞∑
j=1

∥
n∑

i=1

ajiei∥ <∞,
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∑∞
j=1

∑n
i=1 a

j
iei exists in X. We have

∞ >

∞∑
j=1

∥
n∑

i=1

ajiei∥ ≥ ∥ lim
k→∞

n∑
i=1

ei

k∑
j=1

aji∥

= ∥
n∑

i=1

ei(

∞∑
j=1

aji )∥.

By (b) (which we will prove without using (a)), all norms on X are equivalent, so we may consider

∥·∥ to be the ℓ1-norm. Hence ∞ >
∑n

i=1 |
∑∞

j=1 a
j
i | ≥

∑∞
j=1 a

j
i | for all i. Define ai :=

∑∞
j=1 a

j
i ; then∑n

i=1 aiei is the limit of this convergent sum, so X is complete.

(b) Compare to Exercise 6d of Chapter 5 in Folland; we will take the other statements in this exer-

cise for granted, although we will show where we use the other parts. Let ∥·∥1 be the ℓ1-norm on X.

Let ∥·∥2 is another norm on X and define C := {x ∈ X : ∥x∥1 = 1}, which is compact by an exercise

in Folland (6c). Then ∥·∥2 : C → k is continuous (by Exercise 6b in Folland) and hence bounded

(since C is compact). Let M1 be such that ∥x∥2 ≤ M1 = M1∥x∥1 for x ∈ C. Then by linearity of

the norm we have 1
M1

∥·∥2 ≤ ∥·∥1.

Now we claim there exists M2 > 0 such that ∥x∥2 ≥ M2 for all x ∈ C. If not there is some sequence

(xn) ⊂ C such that ∥xn∥2 → 0. But again, C is compact, so 0 ∈ C, contradiction. Hence such an

M2 exists and, by linearity of the norm again, ∥·∥1 ≤ M2∥·∥2. Setting c = 1
M1

and k = M2, we are

done.

Problem 9. Let P be the vector space of all polynomials with real coefficients. Show there is no

norm on P which turns P into a Banach space. (Hint: you may use the first statement of Problem

8 even if you have been unable to prove it.)

Proof. This is a Baire Category Theorem problem, as is common in problems that ask you to prove

something cannot be a Banach space - there is usually a structural problem coming from how norms

(hence metrics) interact with the space.

Say there is such a norm ∥·∥ that turns P into a Banach space. Define Pn := {a0 + a1x + · · · +
anx

n : ai ∈ R, i ∈ [n]0}. We claim these spaces are nowhere dense. Indeed, say p := a0 + a1x +

· · · + anx
n is an arbitrary element of Pn. Then for ε > 0, the polynomial p′ = p + ε

2∥xn+1∥x
n+1 ∈

B(ε, p), so Pn must have empty interior. Also, Pn is closed: we known Pn is a finite-dimensional

vector space spanned by {1, x, . . . , xn}, so by 8a) it is complete and hence closed. So these sets are

nowhere dense and Baire Category Theorem gives us our contradiction.

Problem 10. Let p ∈ [1,∞). Show that the unit ball of L∞[0, 1] is weakly closed in Lp[0, 1].

Proof. First L∞[0, 1] ⊂ Lp[0, 1], so the unit ball of L∞[0, 1] is contained in Lp[0, 1]. Say fn ⊂
B(L∞[0, 1]) such that

g(fn) → g(f) ⇒
∫
fng →

∫
fg

for all g ∈ L∗
p = Lq. In particular, if g = 1A for any Borel set A ⊂ [0, 1], we see that∫

A

fn →
∫
A

f.
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Now we see that | 1
m(A)

∫
A
fn| ≤ 1 for all Borel sets A with positive measure, so | 1

m(A)

∫
A
f | ≤ 1 as

well. Lebesgue Differentiation theorem then says |f | ≤ 1 a.e., so f ∈ B(L∞[0, 1]).

Alternatively: set An := {x : Re(f) ≥ 0, Im(f) ≥ 0, |f | > 1 + 1
n}. Then this inequality above

guarantees that m(An) = 0 for all n, and hence so is {x : Re(f) ≥ 0, Im(f) ≥ 0, |f | > 1} =
⋃∞

n=1An.

The process is similar for showing that {x : Re(f) ≥ 0, Im(f) < 0, |f | > 1} and the other two

corresponding sets when Re(f) ≤ 0 are zero-measure sets. From this we see that ∥f∥∞ ≤ 1 and

f ∈ B(L∞[0, 1]).

30 August 2009

Problem 1. Evaluate the iterated integral∫ ∞

0

∫ ∞

0

x exp(−x2(1 + y2)) dx dy.

(Justify your answer.)

Proof. (Thanks to the Qual Prep course of 2022 for spotting the solution, as the compiler could

not.) For the inner integral, we use u-substitution with u = −x2(1 + y2):∫ ∞

0

x exp(−x2(1 + y2)) dx =
1

2(1 + y2)
,

so this iterated integral is equal to

1

2

∫ ∞

0

1

1 + y2
dy =

1

2

π

2
=
π

4
.

Problem 2. Let f ∈ C[0, 1] be real-valued. Prove that there is a monotone increasing sequence of

polynomials (pn(x))
∞
n=1 converging uniformly on [0, 1] to f(x).

Proof. The first part of this problem can be gotten through Stone-Weierstrass treatment; to show

we can construct such a sequence to be monotone increasing will take a bit of work.

We note that [0, 1] is compact Hausdorff, the collection of polynomials P is indeed a unital algebra,

and that x− x0 separates the point x0 away from any other point. Since this algebra is closed under

complex conjugation, Stone-Weierstrass tells us the collection of polynomials P is uniformly dense in

C[0, 1].

Take f ∈ C[0, 1]. For any n ∈ N, we note that we may find a polynomial pn ∈ P such that

∥(f − 1

n
)− pn∥∞ <

1

2
(
1

n
− 1

n+ 1
).
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Note that (f− 1
n+1 )−(f− 1

n ) =
1
n − 1

n+1 , so this condition guarantees that pn+1 ≥ pn. What’s more,

∥f − pn∥ ≤ 1

n
+

1

2n(n+ 1)
,

and this latter expression converges to zero as n→ ∞. So (pn) is the desired sequence.

Problem 3. Let (fn) be a sequence of non-zero elements of L2[0, 1]. Prove that there is a function

g ∈ L2[0, 1] such that for all n ≥ 1 we have∫ 1

0

g(x)fn(x) dx ̸= 0.

Proof. This is a Baire category theorem problem. The things that lead this way: we have a “se-

quence” (i.e., countable number) of elements with which g must have nonzero L2-inner product with

at least one. This seems to suggest a contradiction proof, where we might be able to build a count-

able collection of nowhere dense sets. (Recall that ⟨fn, g⟩L2 =
∫ 1

0
ḡfn dx.)

To the end we suppose there does not exist such a function g. Then for all g ∈ L2[0, 1] there must

exist an n such that ⟨fn, g⟩ = 0. Hence g ∈ ⟨fn⟩⊥, the orthogonal complement of the (closed, since

finite-dimensional) subspace generated by fn. This is equivalent to the statement

L2[0, 1] =

∞⋃
n=1

⟨fn⟩⊥.

These sets ⟨fn⟩⊥ are nowhere dense. To see this, first note that this set is closed by continuity of

the inner product. Fix ε > 0. For any g ∈ ⟨fn⟩⊥, note

∥(g + εfn)− g∥2 < ε∥fn∥2,

and ⟨fn, g + εfn⟩ = ε⟨fn, fn⟩ > 0. So g + εfn /∈ ⟨f⟩⊥, yet is in any ε∥fn∥2-ball around g.

Baire Category Theorem finishes the proof.

Problem 4. Let (X,Σ, µ) be a measure space with µ(X) <∞. Given set Ai ∈ Σ, i ≥ 1, prove that

µ(

∞⋂
i=1

Ai) = lim
n→∞

µ(

n⋂
i=1

Ai).

Give an example to show that this need not hold when µ(X) = ∞.

Proof. Setting Bn :=
⋂n

i=1Ai, this is guaranteed by applying continuity from above to the collection

of (Bn). (See Folland Theorem 1.8c,d for a proof; it is usually preferred to give a proof more than

one sentence long, so you might prove continuity from above using continuity from below using the

fact that our measure space is finite.)

For the example we consider Ai := [i,∞) in R. Note
⋂∞

i=1Ai = ∅, so µ(
⋂∞

i=1Ai) = 0, but

µ(

n⋂
i=1

Ai) = µ([n,∞)) = ∞.
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Problem 5. Let K be a compact subset of Rn and describe the dual space of the Banach space

C(K). (You may choose either the real or the complex Banach space.)

Let 1 ∈ C(K) denote the constant function taking value 1 and let S be the subset of the dual space

consisting of the positive bounded linear functionals on C(K) that map 1 to 1. Show that the ex-

treme points of S are the point evaluation maps, f 7→ f(x).

Proof. The choice of real or complex Banach space makes not much difference. In the case of the

complex Banach space, Riesz representation theorem for C(X) identifies the dual space of C(K)

with the space of complex Radon measures on K. In the case of the real Banach space, these are

replaced with the space of signed Radon measures on K.

For the second problem, we quickly note that these unital positive bounded linear functionals cor-

respond with probability Radon measures Prob(K) (i.e., positive measures µ such that µ(K) = 1).

Also, the point evaluation maps f 7→ f(x) correspond to the single atomic measures

δx(E) =

{
1 x ∈ E

0 x /∈ E
.

So we want to show the single atomic measures are the extreme points in Prob(K). These are in-

deed extreme points, since if δx = tµ + (1 − t)ν for t ∈ (0, 1) and µ, ν ∈ Prob(K), we must have

µ({x}c) = ν({x}c) = 0 by positivity, so µ and ν must be δx.

If µ is not singly atomic, there exists a measurable set E ⊂ K such that 0 < µ(E) < 1. Then

µ = µ(E)[
1

µ(E)
µ|E ] + (1− µ(E))[

1

µ(Ec)
µ|Ec ]

is a way to write µ as a convex combinations of other probability measures.

Problem 6. Let ℓ2(Z) denote the real Hilbert space of square-summable functions on the inte-

gers. Let xk (k ≥ 1) be a sequence in ℓ2(Z) that converges coordinate-wise to zero. i.e., such that

limk→∞ xk(n) = 0 for all n ∈ Z.

(a) Must xk converge in norm to 0 as k → ∞? What about if ∥xk∥ is assumed to be bounded?

(b) xk converge weakly to 0 as k → ∞? What about if ∥xk∥ is assumed to be bounded?

Justify your answers (by proof or counter-example).

Proof. (a) No to both. The counterexample in both cases is the sequence (xk) = (δk)k∈N, where

δn(z) =

{
1 n = z

0 n ̸= z
.

The ℓ2 norm of each of these functions is 1, and xk(n) is eventually zero for all n.
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(b) If ∥xn∥ is not bounded, this is untrue. We may consider g(n) = δ{m:m≥1}(n)
1
n and take xk(n) =

nδk(n). Once again, each xk(n) is eventually zero, but
∫
xkg = 1 for all k. Now fix ε > 0 and g ∈

ℓ2(Z). Pick N such that
∫
|n|>N

|g|2 < ε. Further pick a K such that k > K implies supn∈[−N,N ] |xk(n)| <
ε

2N+1 . Then for k > K,∫
Z
|xkg| =

∫
|n|≤N

|xk(n)g(n)|+
∫
|n|>N

|xk(n)g(n)| < ε(sup
n
{|g(n)|}+ ∥xk(n)∥2).

So if ∥xk∥ is bounded, we may replace supn∥xk(n)∥ with a uniform bound M . So xn converges

weakly to 0.

Problem 7. Let X be a second countable (that is, having a countable basis of open sets) and nor-

mal topological space. Show that there is a countable family F of continuous functions from X into

the interval [0, 1] that separates points and closed sets: i.e., such that if x ∈ X and C is closed sub-

set of X with x /∈ C, then there is f ∈ F such that f(x) = 0 and f(C) ⊆ {1}.

Proof. Let (Bi)
∞
1 be a basis for X. If Bi ⊂ Bi ⊂ Bj for some i, j ∈ N, then Bi, B

c
j are disjoint

closed sets, and Urysohn’s lemma yields a function fij ∈ C(X, [0, 1]) such that fij(Bi) ⊂ {0},
fij(B

c
j ) ⊂ {1}.

Let F := {fij : (i, j) ∈ N2 when Bi ⊂ Bi ⊂ Bj}. It is clear that F is countable; we need to show F
separates points and closed sets.

Let x ∈ X and C ⊂ X be closed with x /∈ C. By definition of basis, there exists some Bj such that

x ∈ Bj ⊂ Cc. Thus by normality there are two disjoint open sets U, V such that x ∈ U and Bc
j ⊂ V .

Again by definition of basis, there is some Bi such that x ∈ Bi ⊂ U . Now

Bi ⊂ Bi ⊂ U ⊂ V c ⊂ Bj .

Hence there is some fij ∈ F such that fij(Bi) = {0} and fij(B
c
j ) = {1}. Since x ∈ Bi and C ⊂ Bc

j ,

we are done.

Problem 8. Let f ∈ L1(0,∞) and define

h(x) =

∫ ∞

0

(x+ y)−1f(y) dy

for x > 0. Show that h is differentiable at all x > 0 and show h′ ∈ L1(r,∞) for every r > 0. What

about for r = 0? (Justify your answer.)

Proof. The derivative h′ can be shown to be

h′(x) =

∫ ∞

0

− 1

(x+ y)2
f(y) dy

in a number of ways. We use the classical derivation formula.

lim
k→0

h(x+ k)− h(x)

h
= lim

k→0

∫ ∞

0

−1

(x+ y + k)(x+ y)
f(y) dy.
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If we let k decrease to 0, these functions are monotonically increasing, and if k increases to 0 it is

monotonically decreasing. In particular, when k = −x
2 ,∫ ∣∣∣∣ −1

(x+ y + k)(x+ y)
f(y)

∣∣∣∣ ≤ ∣∣∣∣ 2x2
∣∣∣∣ ∫ |f(y)| <∞,

so MCT applies and gives us the desired formula.

We now want to calculate the L1 norm of h′ on (r,∞) for r > 0. We use Tonelli below to switch the

order of integration:∫ ∞

r′

∫ ∞

0

| 1

(x+ y)2
f(y)| dy dx =

∫ ∞

0

|f(y)|
∫ ∞

r

1

(x+ y)2
dx dy

=

∫ ∞

0

|f(y)|| 1

r + y
| dy

=≤ 1

r

∫ ∞

0

|f(y)| <∞.

So h′ ∈ L1(r,∞) for r > 0. The problem of whether h′ ∈ L1(0,∞) is undetermined when r = 0, as

one needs more information to determine whether

|f(y)|
y

is integrable from the right at y = 0.

Problem 9. Suppose X is a Banach space and Y is a normed linear space and T : X → Y is a

linear map such that for every bounded linear functional g ∈ Y ∗ we have g ◦ T is bounded. Show that

T is bounded.

Proof. Compare this to Exercise 37 in Chapter 5 of Folland. There are several different ways to

solve this problem - I believe one uses the closed graph theorem. Here is my favorite solution.

This problem can be rephrased as saying (T ∗(g) := g ◦ T is bounded for all g ∈ Y ∗) implies (T is

bounded). Let x 7→ x̂ be the inclusion map of X into X∗∗. Note

sup
∥x∥=1

∥T̂ x(f)∥ = sup
∥x∥=1

∥(f ◦ T )(x)∥ = ∥f ◦ T∥ <∞.

This is true pointwise for each f ∈ Y ∗. Hence by Uniform Boundedness

sup
∥x∥=1

∥T̂ x∥ = sup
∥x∥=1

∥Tx∥ <∞

since · 7→ ·̂ is an isometry. But this means exactly that T is bounded.

Problem 10. Let X be a real Banach space and suppose C is a closed subset of X such that

1. x1 + x2 ∈ C for all x1, x2 ∈ C;

2. λx ∈ C for all x ∈ C and λ > 0; and

3. for all x ∈ X there exist x1, x2 ∈ C such that x = x1 − x2.
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Prove that, for some M > 0, the unit ball of X is contained in the closure of

{x1 − x2|xi ∈ C, ∥xi∥ ≤M(i = 1, 2)}.

Deduce that, for some K > 0, every x ∈ X can be written as x = x1 − x2, with xi ∈ C and

∥xi∥ ≤ K∥x∥. (In fact, any K > M will do, but you need not show this.)

Proof. This set C could be considered the definition of a “positive cone” - i.e., the elements of C

are the “positive part” of the set X. If X = Rn, then C = {(ai)ni=1 : ai ≥ 0, i ∈ [n]} satisfies these

conditions.

Let’s define

AK := {x1 − x2 : xi ∈ C, ∥xi∥ ≤ K}

and note that, by condition (iii),

X =
∞⋃

K=1

AK

We claim that, if the problem statement were false, AK (which are closed since C is closed and the

norm is continuous) has empty interior for all K. Say AK contains some B(ε, x). Let x = x′1 − x′2
for some x′i ∈ C, ∥x′i∥ ≤ K. Then

B(ε, 0) ⊂ AK − x = {(x1 − x′1)− (x2 − x′2) : xi ∈ C, ∥xi∥ ≤ K} ⊂ A2K .

Furthermore,

B(1, 0) ⊂ 1

ε
A2K ⊂ Aceil( 2K

ε ).

So the AK would have empty interior. But in this case these are nowhere dense sets, so by Baire

Category Theorem we are formced to conclude the problem statement is true.

The second part of the statement is obvious, as for any x ∈ X, x
2∥x∥ ∈ B(1, 0). So K = 2M will

suffice.

31 January 2009

Problem 1. Let F ⊂ Rn be compact and prove that the convex hull conv(F ) is compact. (You may

use without proof the theorem of Carathéodory that states that every point in the convex hull of any

subset S of Rn is a convex combination of n+ 1 or fewer points of S.)

Proof. We first prove a lemma:

Lemma. Let A be compact and let (aki )k∈N be sequences in elements of A for i ∈ [n]. Then there

exists an infinite subset K ⊂ N such that (aki )
k→∞→ ai ∈ A for each i.

Proof. This is an induction argument on the number of sequences n. For n = 1 this is true by the

definition of compactness. Assume the argument is true for n = n0 and let (aki )k be n0+1 sequences

in A. If Kn0 is the guaranteed infinite subset as stated above for (aki ) for i ∈ [n0], then by definition
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of compactness again there is a further subset Kn0+1 ⊂ Kn0
such that (akn0+1)k converges in A as

well; this is the desired subset.

This lemma will do the heavy lifting for us moving forward. Let xk =
∑n+1

i=1 α
k
i f

k
i be a sequence in

conv(F ); it suffices to show that xk converges to some x ∈ conv(F ) (since Rn is second countable,

sequential compactness is sufficient, although one can make a similar argument using nets and sub-

nets). Then by the lemma there exists an infinite subset K ⊂ N such that (αk
i )k converges for all

i ∈ [n+ 1]; say αk
i

k→∞→ αi ∈ R. Then certainly αi ∈ [0, 1] for all i since [0, 1] is compact, and also

n+1∑
i=1

αi =

n+1∑
i=1

lim
k
αk
i = lim

k

n+1∑
i=1

αk
i = 1.

Similarly by the lemma we can find a further infinite subset L ⊂ K such that (fki )k converges for all

i ∈ [n+ 1]. If we set fi to be this convergent point for each i, then since F is compact fi ∈ F . Since

αi is bounded in norm we have the sequence (αk
i f

k
i )k → αifi, and similarly (xk) = (

∑n+1
i=1 α

k
i f

k
i )k →∑n+1

i=1 αifi, an element in conv(F ).

Problem 2. Let (X,M, ρ) be a finite measure space. Suppose U ⊂ M is an algebra of sets and

µ : U → C is a complex, finitely additive measure such that |µ(E)| ≤ ρ(E) < ∞ for all E ∈
U. Show that there is a complex measure ν : M → C, whose restriction to U is µ, and such that

|ν(E)| ≤ ρ(E) for all E ∈ M. (Hint: you may want to consider the set of simple functions of the

form
∑n

1 ci1Ei .)

Proof. Although this is a problem about measures, the wording actually suggests approaching this

using the Hahn-Banach theorem (note that we want to maintain some upper bound on a measure,

possibly one we can derive from an extended linear functional). To this end, let’s define

A := {
n∑

i=1

ci1Ei
: n ∈ N, ci ∈ C, Ei ∈ U disjoint}.

This is a subspace of L1(ρ) since (X,M, ρ) is a finite measure space. (It is of course not necessarily

closed, but this does not matter to us.) Let us define a linear functional on A

f :
n∑
1

ci1Ei
7→

n∑
1

ciµ(Ei)

to be “integration over µ”. Clearly f is a linear functional. Also,

|f(
n∑
1

ci1Ei)| ≤
n∑
1

|ci||µ(Ei)|

≤
n∑
1

|ci|ρ(Ei)

by assumption. This later term is in fact ∥ci1Ei
∥L1(ρ), so if this simple function is denoted as ϕ we

have |f(ϕ)| ≤ ∥ϕ∥1. Note that ∥·∥1 is a sublinear functional.
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Now we may apply Hahn-Banach. We get a linear functional F on all of L1(ρ) such that |F (·)| ≤
∥·∥1. We note that this implies F is continuous (since ∥·∥1 is continuous).

Define ν : M → C to be

ν(E) := F (1E).

Clearly ν|U = µ. If (Ej) ⊂ M is disjoint, then

ν(

∞⋃
1

Ej) = F ( lim
n→∞

1⋃n
j=1 Ej

)

= lim
n→∞

F (1⋃n
j=1 Ej

)

= lim
n→∞

F (

n∑
j=1

1Ej
) = lim

n→∞

n∑
j=1

F (1Ej
)

=

∞∑
j=1

ν(Ej).

To verify this first equality, it is sufficient to see 1⋃∞
j=1 Ej

has finite L1(ρ) norm and use continuity

from below, and this is straightforward since ρ itself is a finite measure.

Problem 3. Given p ∈ [1,∞) and f ∈ Lp([0,∞)), prove

lim
n→∞

∫ ∞

0

f(x)e−nx dx = 0.

Proof. You already know what it is! We want to use Lebesgue Dominated Convergence Theorem

(LDCT) to move the limit inside the integral. To do this we use a Hölder inequality on the domi-

nating function fe−x:

∥f(x)e−x∥1 ≤ ∥f∥p∥e−x∥q

where q is the conjugate exponent to p (in particular, q ≥ 1), and

(

∫ ∞

0

e−qx)1/q = (−1

q
[e−qx]∞0 )1/q = (

1

q
)1/q ≤ 1.

Hence fe−x ∈ L1([0,∞)), and

lim
n→∞

∫ ∞

0

f(x)e−nx dx =

∫ ∞

0

lim
n→∞

f(x)e−nx dx =

∫ ∞

0

δx=0f(0) dx = 0.

Problem 4. For each bounded, real-valued, Lebesgue measurable function f on [0, 1], prove that the

sets

U(f) := {(x, y)|x ∈ [0, 1], y ≥ f(x)},
L(f) := {(x, y)|x ∈ [0, 1], y ≤ f(x)},
G(f) := {(x, f(x))|x ∈ [0, 1]}
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are Lebesgue measurable subsets of [0, 1] × R. (You may want to consider simple functions first.)

Then prove that G(f) is a null set (with respect to Lebesgue measure).

Proof. If f =
∑n

1 ci1Ei
is a simple function, U(f) [resp. L(f)] is equal to

⋃n
1 Ei × [ci,∞) [resp.⋃n

1 Ei × (−∞, ci]], which are clearly Lebesgue measurable as each factor is. For arbitrary bounded

Lebesgue-measurable functions f : [0, 1] → R, we then apply Theorem 2.10 to get an increasing

sequence ϕn of simple functions converging uniformly to f and take the intersection of U(ϕn) to get

U(f). Note U(f) = L(−f), so this shows U(f) and L(f) are Lebesgue measurable.

Now G(f) = U(f) ∩ L(f) is also Lebesgue measurable. To show G(f) is a null set, we evaluate

(m×m)(G(f)) =
∫ ∫

1G(f) dy dx (we may do this since 1G(f) ∈ L+ (using Lebesgue measurability of

G(f)!) and by invoking Tonelli). We write∫ ∫
1G(f)(x, y) dy dx =

∫
[0,1]

m({f(x)}) dx =

∫
[0,1]

0 dx = 0.

Problem 5. Let ϕ : C0(R) → C be a bounded linear functional and suppose µ is a complex Borel

measure on R such that ϕ(f) =
∫
f dµ for every rational function f over the field of complex num-

bers whose restriction to R belongs to C0(R). Show that the formula ϕ(f) =
∫
f dµ holds for all

f ∈ C0(R).

Proof. The question ought to be a bit more clear: we must take the real parts of functions f before

applying ϕ to them. Otherwise we would need ϕ to be defined on a bigger set than C0(R). We will

make the former assumption.

Although this may appear at first to be a Riesz representation problem, this is actually a Stone-

Weierstrass problem.

Let A := {f = p
q |R : p, q polynomials in C, f |R ∈ C0(R)}. We now go through the sequence of S-W

questions:

Is A is an algebra? Yes, since the space of rational functions and C0(R) are both algebras - and

since the space of rational functions is closed under multiplicative inverses. It is also easy to see

that A is closed under taking complex conjugates.

Does A separate points of R? We only need the polynomials with real coefficients to do that. Since

the polynomial (x− x0 + 1) evaluates to 1 when x = x0 for any x0 ∈ R, the closure of A in C0(R) is
indeed all of C0(R).

Now for any f ∈ C0(R) we can find fn ∈ A converging to f uniformly. Since ϕ is bounded, it is

continuous, so

ϕ(f) = limϕ(fn) = lim

∫
fn dµ.

Since µ is complex and C0(R) is bounded, we may use LDCT to switch the limit and the integral

and get ϕ(f) =
∫
f dµ as desired. This is worth spelling out: there exists an N such that n > N

implies |fn| ≤ |fN |+ 1. Note that this latter function is an L1(µ) function:

|
∫

|fN |+ 1 dµ| ≤ |
∫

|fN | dµ|+ |µ|(R),
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both of which are finite (the first term since ϕ is bounded, the second term by definition of complex

measure). This is our desired dominating function.

Problem 6. Let T be a surjective linear map from a Banach space X to a Banach space Y satisfy-

ing

∥Tx∥ ≥ 1

2009
∥x∥

for all x ∈ X. Show that T is bounded.

Proof. Note that this norm condition implies that T is injective: if x ̸= y, then ∥T (x − y)∥ ≥
1

2009∥x − y∥ > 0, so Tx ̸= Ty. So T is a bijection between Banach spaces, and the inverse map T−1

exists. Note the inverse map of a linear map is also linear. To see this, let y1 = T (x1), y2 = T (x2)

for xi ∈ X and yi ∈ Y , i ∈ [2]. Then

T−1(λy1 + y2) = T−1T (λx1 + x2) = λx1 + x2

= λT−1(y1) + T−1(y2).

T−1 is also bounded; in fact ∥x∥ ≥ 1
2009∥T

−1x∥ ⇒ ∥T−1x∥ ≤ 2009∥x∥. So T−1 is a bounded linear

map from Y to X, so as a consequence of the Open Mapping Theorem (Corollary 5.11) T−1 is an

isomorphism. Hence T is bounded.

Problem 7. Let X be an infinite-dimensional Banach space. Show

(a) the unit ball {x ∈ X|∥x∥ ≤ 1} is closed in the weak topology on X,

(b) every nonempty, weakly open subset of X is unbounded, and

(c) the weak topology on X is no the topology of a complete metric on X.

Proof. Note the similarity to Problems 48 and 49 in Chapter 5 of Folland.

(a) Suppose (xn) is a sequence in X such that ∥xn∥ ≤ 1 for all n and, for any f ∈ X∗, f(xn) →
f(y) for some y ∈ X. If ∥y∥ > 1, there exists a norm-one functional f ∈ X∗ such that f(y) = ∥y∥ >
1. But this contradicts continuity of f since |f(xn)| ≤ 1 for all n.

(b) This same proof extends to show that any norm-bounded set has a norm-bounded weak closure.

Let U be a nonempty weakly open set. Note that a basic open set in the weak topology are of the

form

U(F, x, ε) :=
⋂
f∈F

{y ∈ X : f(y − x) < ε}

where F ⊂ X∗ is finite, x ∈ X, ε > 0 (it suffices to consider a single point x since the weakest topol-

ogy making functions in X∗ continuous coincides with the weakest topology making functions in X∗

continuous at every point x ∈ X). Let’s say a basic open set of this form is contained in U . For any

f ∈ X∗, since the range of f has dimension ≤ 1, the dimension of X/N(f) is ≤ 1 as well (see Ex-

ercise 35 of Chapter 5 in Folland). So dim(X/(
⋂

f∈F N(f))) < ∞. Since X is infinite-dimensional,

this implies dim(
⋂

f∈F N(f)) = ∞. We can then find a nonzero y ∈
⋂

f∈F N(f). So x + ny ∈ U

(since f([x+ ny]− x) = 0) for all n, and ∥x+ ny∥ → ∞ as |n| → ∞. So U is unbounded.
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(c) In particular, (b) shows that B(n, 0) is nowhere dense for n ∈ N. Yet X =
⋃∞

n=1B(n, 0). So

if X were the topology of a complete metric on X, this would be a direct contradiction with Baire

Category Theorem.

Problem 8. (a) Let (X,M, µ) be a measure space and suppose En ∈ M are such that

∞∑
n=1

µ(En) <∞. (1)

Show

µ(lim sup
n→∞

En) = 0, (2)

where lim supn→∞En =
⋂∞

m=1

⋃∞
n=mEn.

(b) Either prove or disprove that the conclusion (2) follows when hypothesis (1) is replaced by

∞∑
n=1

µ(En)
2 <∞.

Proof. (a) With condition (1), we have that µ(
⋃∞

n=1En) ≤
∑∞

n=1 µ(En) < ∞, so setting Fm :=⋃∞
n=mEn we have F1 has finite measure and (Fm) is decreasing. So the result follows by continuity

from above, since µ(
⋃∞

n=mEm) ≤
∑∞

n=m µ(Em) → 0 as m→ ∞.

(b) (2) does not follow with this replacement. Let F1 = [0, 1], and if Fk = [α, β] let Fk+1 = [β, β +
1

k+1 ] for k ∈ N. Define Ek = Fk mod 1; that is, Ek = {x− nx : x ∈ Fk, nx s.t. x− nx ∈ [0, 1]}. Then
µ(En) =

1
n ,
∑∞

n=1 µ(En)
2 =

∑∞
n=1

1
n2 <∞.

Note in particular that
⋂∞

n=m

⋃∞
n=1En = [0, 1] for any m, since by construction these sets wrap

around the interval [0, 1] infinitely many times (
∑

1
n = ∞). Hence µ(lim supnEn) = 1 ̸= 0.

Problem 9. Let K : [0, 1]× [0, 1] → R be continuous. If f ∈ L1([0, 1]), set

(Tf)(x) =

∫ 1

0

K(x, y)f(y) dy

for x ∈ [0, 1].

(a) Show Tf ∈ C([0, 1]).

(b) Let B be the unit ball of L1([0, 1]) and show that T (B) is relatively compact in C([0, 1]).

Proof. Note the similarities between this problem and Chapter 4, Problem 63 of Folland. However,

the unit ball of L1([0, 1]) is slightly larger than the set given in the problem.

(a) K is a continuous operator on a compact space, so it is uniformly continuous. Take ε > 0 and

find δ > 0 such that

d((x1, y1), (x2, y2)) < δ ⇒ |K(x1, y1)−K(x2, y2)| < ε.
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Then whenever |x1 − x2| < δ,

|Tf(x1)− Tf(x2)| ≤
∫ 2

0

|K(x1, y)−K(x2, y)||f(y)| dy

≤ ε

∫
|f(y)| dy.

Since f ∈ L1, Tf ∈ C([0, 1]).

(b) Note in the proof above the δ we chose gave us the same bound of ε regardless of our choice of

f as long as ∥f∥1 ≤ 1. This gives equicontinuity of T (B). Since |Tf(x)| ≤ ∥K∥∞∥f∥1 by Hölder we

find this set to be pointwise bounded as well. Hence Arzela-Ascoli I applies and this set is relatively

compact.

Problem 10. Let µ be a finite Borel measure on R that is absolutely continuous with respect to

Lebesgue measure and show that for every Borel subset A of R, the map t 7→ µ(A + t) is continuous

from R to [0,∞). (Hint: you might first suppose A is an interval).

Proof. Define F (x) := µ((−∞, x]). By results used in deriving the Fundamental Theorem of Calcu-

lus (Corollary 3.33), F ′ ∈ L1 and F =
∫ x

−∞ F ′(t) dt. Hence for a < a′ ∈ R close enough,

µ((−∞, x] + a′)− µ((−∞, x] + a) =

∫ x+a′

x+a

F ′(t) dt

is also small, using continuity of the integral limits for L1 functions.

We now want to show

{A ∈ P(X) : a 7→ µ(A+ a) is continuous}

is a σ-algebra. It must be closed under finite (disjoint) unions, and by finiteness of the measure one

can approximate the measure of µ(
⋃∞

i=1Ai + a) by µ(
⋃n

i=1Ai + a), so this collection is closed under

countable unions as well. Likewise it is closed under complements since µ(R) = µ(A+ a)+µ(Ac + a)

is constant. So this collection is a σ-algebra containing the open one-sided rays, so it contains the

Borel σ-algebra.
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